QuantumCuriosity42 said:
That is interesting to know, but LTI systems are more of an engineering rather than physics concept right?
It looks like some nature properties like I said in my previous comment also depend on armonic frequencies.
LTI applies in physics as well. The propagation of light through any linear time-invariant medium (air, glass or colored filters) is an example. IWe can demonstrate that sines and cosines are the eigenfunctions (the natural modes or natural ways to characterize) an LTI system:
The output y(t) of an LTI system is given by the convolution of an input x(t) with the system's impulse response h(t) according to$$y(t)=x(t)*h(t)=\int^\infty_{-\infty}{x(t-\tau)h(\tau)d\tau}$$h on the right is independent of the time of day t, hence the characterization that the system is not time varying.
Now let the input be a wave of a single frequency $$x(t)=x(ω,t)=A(\omega)exp(i\omega t)$$where A is a complex number, so that x(t) consists of both a sine and cosine wave of the same frequency ω but of independent amplitudes. Then
$$y(t)=A(\omega)exp(i\omega t)\int^\infty_{-\infty}{exp(-i\omega \tau)h(\tau)d\tau}$$The integral is just the Fourier transform of the impulse response H(ω), which is called the frequency response of the system. Thus $$y(t)=H(ω)x(ω,t)$$We say that the complex exponential (sine/cosine, if you prefer) function x(ω,t) is a characteristic function of the LTI system and H(ω) is the corresponding characteristic value; these are also called eigenfunctions and eigenvalues. The frequency response or eigenvalue spectrum H(ω) completely characterizes the response of the system to any arbitrary input because every input can be decomposed into sines and cosines via Fourier transformation, and the system response to each frequency component is known from the frequency response. With more advanced math, it can be shown that this is the only set of eigenfunctions for an LTI system and that they are all orthogonal to each other.
The connection to light color is that light is a collection of electromagnetic waves, which are sines and cosines by definition. Propagation media such as air, glass or colored filters are LTI so decomposing light into its constituent frequencies (colors) and applying the frequency response function for the medium gives the output.
Another class of physical system is linear and spatially (rather than temporally) non-varying. They are treated mathematically in the same way but using spatially varying waves and spatial frequency responses.