Orthogonal projection onto line L

kuhle3133
Messages
1
Reaction score
0


Def1. Let L be a line in E. We define the "orthogonal projection onto L" to be
Ol = {(P,Q)| P,Q in E and either
1.P lies on L and P=Q or
2.Q is the foot of the perpendicular to L through P.

Problem 1. Let L be a line in E. Show that Ol is not a rigid motion because it fails condition (iii) of definition 1 and it fails conditions (i) and (ii) of definition 3

Def.1 part (iii) = If P and Q are elements of F, then the second coordinate of P is not the second coordinant of Q.
Def. 3 part (i) = If P is an element of E, then there is an element of F having P as its second coordinant
Def. 3 part (ii) = If (P,P') and (Q,Q') are two elements of F then the segment PQ and P'Q' are congruent.




Homework Equations





The Attempt at a Solution


I can prove that it fails Def 3 part ii because rigid motions preserve distances where orthogonal projections don't, but could use help on the other two.
Thanks
 
Physics news on Phys.org
kuhle3133 said:


Def1. Let L be a line in E. We define the "orthogonal projection onto L" to be
Ol = {(P,Q)| P,Q in E and either
1.P lies on L and P=Q or
2.Q is the foot of the perpendicular to L through P.

This is not very well phrased. I think that you mean you are given P and Q is its orthogonal projection onto L.

Problem 1. Let L be a line in E. Show that Ol is not a rigid motion because it fails condition (iii) of definition 1 and it fails conditions (i) and (ii) of definition 3

Def.1 part (iii) = If P and Q are elements of F, then the second coordinate of P is not the second coordinant of Q.[/quote]
You say above that "L is a line in E" which I take to be a Euclidean space, but what is F?
In any case, if P lies on L, the P= Q in which case the second coordinate of P is the second coordinate of Q. Or is there something about F you haven't told us that prohibits this?

Def. 3 part (i) = If P is an element of E, then there is an element of F having P as its second coordinant
Def. 3 part (ii) = If (P,P') and (Q,Q') are two elements of F then the segment PQ and P'Q' are congruent.




Homework Equations





The Attempt at a Solution


I can prove that it fails Def 3 part ii because rigid motions preserve distances where orthogonal projections don't, but could use help on the other two.
Thanks
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top