Orthogonality of inner product of generators

PineApple2
Messages
49
Reaction score
0
Hi, this is a rather mathematical question. The inner product between generators of a Lie algebra is commonly defined as \mathrm{Tr}[T^a T^b]=k \delta^{ab}. However, I don't understand why this trace is orthogonal, i.e. why the trace of a multiplication of two different generators is always zero.
 
Physics news on Phys.org
This is a choice we make for convenience. The generators form a basis for vector space that is the Lie algebra, and it is convenient to choose an orthogonal basis. We can always choose a basis that is orthogonal.
 
The only thing you should worry about is whether the trace tr(AB), where A and B are elements of the Lie algebra, is an inner product or not. If you have an inner product, you can always select an orthogonal basis.
 
This is the great thing with semi-simple compact Lie groups. Their generators can always be chosen such as they are "orthogonal" in the sense you wrote. This implies that the Lie group, as a differentiable manifold (with the group operations providing differentiable mappings), has a "natural" metric (Riemann-space) structure and you can thus easily derive things like the invariant measure for integrations over the group (Haar measure), using Weyl's unitarity trick (proving that all finite-dimensional representations are equivalent to a unitary one) etc. Last but not least, all semi-simple compact Lie groups are identified ("Cartan catalogue"). For details, see Weinberg, Quantum Theory of Fields, Vol. 2.
 
I see, that makes sense. Thank you all for answering
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top