Jhenrique
- 676
- 4
Is correct to define Fourier series like:
f(t)=\sum_{k=0}^{\infty}a_k \cos \left (\frac{2 \pi k t}{T} \right ) + b_k \sin \left (\frac{2 \pi k t}{T} \right )
Where ak and bk:
a_k=\frac{1}{T} \int_{-T}^{+T} f(t) \cos \left (\frac{2 \pi k t}{T} \right ) dt
b_k=\frac{1}{T} \int_{-T}^{+T} f(t) \sin \left (\frac{2 \pi k t}{T} \right ) dt
?
f(t)=\sum_{k=0}^{\infty}a_k \cos \left (\frac{2 \pi k t}{T} \right ) + b_k \sin \left (\frac{2 \pi k t}{T} \right )
Where ak and bk:
a_k=\frac{1}{T} \int_{-T}^{+T} f(t) \cos \left (\frac{2 \pi k t}{T} \right ) dt
b_k=\frac{1}{T} \int_{-T}^{+T} f(t) \sin \left (\frac{2 \pi k t}{T} \right ) dt
?