Calculating Matrix Representation of 11><11 for 2 Qubits

  • Thread starter Thread starter Getterdog
  • Start date Start date
  • Tags Tags
    Qubits
Getterdog
Messages
83
Reaction score
6
Forming the matrix representation of say 1><1 is no problem but how does one calculate the matrix representation of 11><11 ? Is it
0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1
Any help? thanks jack
 
Last edited:
Physics news on Phys.org
i suppose 1> is (1 0)t then 11 is (1 0 0 0)t and the matrix is 1 in the upper left corner and all the rest 0.
 
Clarification

I take that 11>. Is (0 1 0 1 ) and < 10. Refers to ( 0 1 1 0 ) . The outer product as a matrix has more than 1 non zero entry.,so I'm still stuck. Any clarification on the correct way to do this.? Thanks
 
Unless 11< refers to ( 0 0 0 1) and 10< refers to (0 1 0 0 ) ,01< to (0 0 1 0) Is this it??
 
The matrix elements depend on the order of the basis vectors, so you need to choose a way to order them, e.g. (|00>,|01>,|10>,|11>). The matrix of |11><11| with respect to this ordered basis is
\begin{pmatrix}0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} This could be anticipated from the fact that |11><11| is a projection operator for a 1-dimensional subspace of the vector space, which is 4-dimensional.

The matrix of any operator T with respect to this ordered basis is
\begin{pmatrix}\langle 00|T|00\rangle & \langle 00|T|01\rangle &\dots & &\\ \langle 01|T|00\rangle & \langle 01|T|01\rangle & \dots \\ \vdots & \vdots & \ddots \\ \end{pmatrix}
For more information, see the https://www.physicsforums.com/showthread.php?t=694922 about the relationship between linear operators and matrices.
 
Last edited by a moderator:
  • Like
Likes 1 person
If my previous reply didn't register, thanks,my problem was that I didn't order the basis vectors correctly. Now I can proceed , although something bugs me about ordering of the basis, nature doesn't seem to care about humans need to order anything. Thanks
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top