I've come across using partial derivative notation for taking the partial derivative of a function f with respect to a vector x. I've never seen this before. It is also being referred to as a gradient. However, I have only seen gradients where all variables in the space are featured in the result vector. In this case, the result is a vector but not with components representing each dimension in the space. On wikipedia I've seen this referred to as matrix calculus notation. I would like to know a bit more about this in broad terms. For instance, for a space x1, x2, x3, x4 if I take the partial derivative with respect to a vector x1,x2 is that result vector valued function pointing in the direction of steepest ascent similar to a gradient but only for x1 and x2? Any other pointers appreciated.(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Partial derivative with respect to a vector

**Physics Forums | Science Articles, Homework Help, Discussion**