xeon123
- 90
- 0
In partial fractions, why
\frac{3x+5}{(1-2x)^2} = \frac{A}{(1-2x)^2} + \frac{B}{(1-2x)}
and not
\frac{3x+5}{(1-2x)^2} = \frac{A}{(1-2x)} + \frac{B}{(1-2x)}
Why exists the exponent on the denominator in the right hand side of the equation?
\frac{3x+5}{(1-2x)^2} = \frac{A}{(1-2x)^2} + \frac{B}{(1-2x)}
and not
\frac{3x+5}{(1-2x)^2} = \frac{A}{(1-2x)} + \frac{B}{(1-2x)}
Why exists the exponent on the denominator in the right hand side of the equation?