MHB Partial Order Relation and Equivalence Relation

Yankel
Messages
390
Reaction score
0
Hello all,

If R is a partial order relation, is it true to say that

\[R\cup R^{-1}\]

\[R^{2}\]

\[R\cap R^{-1}\]

Are equivalence relations ?

Regarding the first one, I think that the answer is yes. If

\[xRx\]

then it remains after the union. Asymmetry means that \[xRy\] without \[yRx\] but when I apply the union both are in, so it becomes symmetric, and there is no reason why transitive won't work. Am I correct, or not even close ? What about the other two ?

Thank you
 
Physics news on Phys.org
Yankel said:
there is no reason why transitive won't work.
There is, actually.

Try to come up with proofs using precise statements and formulas rather than words. If a universal statement is false, this has to be shown by producing a counterexample.[/QUOTE]
 
Yes, I found an example now, and I did solve the last one.

The only thing I am stuck with is R^2.

Can I say that if R is a partial order relation it's composite R^2=R ? I tried one example which worked.
 
Yankel said:
Can I say that if R is a partial order relation it's composite R^2=R?
What do you mean by "composite"? It is true that $R$ is transitive iff $R^2\subseteq R$. But does the fact that $R$ is a partial order imply that $R^2$ is symmetric?
 
By composite I Mean xRRy.
 
Yankel said:
By composite I Mean xRRy.
It's important to say things correctly. First, $R\circ R$ is called composition (I have not seen the word "composite" used for this). Second, it is not clear what $x$ and $y$ are in $xRRy$. For given $x$ and $y$, $xR^2y$ is true or false, while $R^2$ is a relation, not something true or false.

Yankel said:
Can I say that if R is a partial order relation it's composite R^2=R?
Yes. Since $R$ is transitive, $R^2\subseteq R$. For converse inclusion, if $(x, y)\in R$, then $(y, y)\in R$ due to reflexivity, so $(x, y)\in R^2$.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Replies
4
Views
1K
Replies
1
Views
2K
Replies
35
Views
4K
Replies
22
Views
5K
Replies
6
Views
1K
Replies
1
Views
1K
Replies
2
Views
1K
Back
Top