MHB Partial Order Relation and Equivalence Relation

Click For Summary
In the discussion on partial order and equivalence relations, participants explore whether the union, intersection, and composition of a partial order relation R yield equivalence relations. It is suggested that the union R ∪ R⁻¹ becomes symmetric and retains reflexivity, potentially making it an equivalence relation. The concept of composition is clarified, emphasizing that R², or the composition of R, is transitive if R is a partial order, but questions remain about its symmetry. The conclusion drawn is that R² is indeed equal to R under certain conditions, confirming that R is transitive and reflexive. The conversation highlights the importance of precise terminology and logical proofs in discussing mathematical relations.
Yankel
Messages
390
Reaction score
0
Hello all,

If R is a partial order relation, is it true to say that

\[R\cup R^{-1}\]

\[R^{2}\]

\[R\cap R^{-1}\]

Are equivalence relations ?

Regarding the first one, I think that the answer is yes. If

\[xRx\]

then it remains after the union. Asymmetry means that \[xRy\] without \[yRx\] but when I apply the union both are in, so it becomes symmetric, and there is no reason why transitive won't work. Am I correct, or not even close ? What about the other two ?

Thank you
 
Physics news on Phys.org
Yankel said:
there is no reason why transitive won't work.
There is, actually.

Try to come up with proofs using precise statements and formulas rather than words. If a universal statement is false, this has to be shown by producing a counterexample.[/QUOTE]
 
Yes, I found an example now, and I did solve the last one.

The only thing I am stuck with is R^2.

Can I say that if R is a partial order relation it's composite R^2=R ? I tried one example which worked.
 
Yankel said:
Can I say that if R is a partial order relation it's composite R^2=R?
What do you mean by "composite"? It is true that $R$ is transitive iff $R^2\subseteq R$. But does the fact that $R$ is a partial order imply that $R^2$ is symmetric?
 
By composite I Mean xRRy.
 
Yankel said:
By composite I Mean xRRy.
It's important to say things correctly. First, $R\circ R$ is called composition (I have not seen the word "composite" used for this). Second, it is not clear what $x$ and $y$ are in $xRRy$. For given $x$ and $y$, $xR^2y$ is true or false, while $R^2$ is a relation, not something true or false.

Yankel said:
Can I say that if R is a partial order relation it's composite R^2=R?
Yes. Since $R$ is transitive, $R^2\subseteq R$. For converse inclusion, if $(x, y)\in R$, then $(y, y)\in R$ due to reflexivity, so $(x, y)\in R^2$.
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...

Similar threads

Replies
4
Views
2K
Replies
1
Views
2K
Replies
35
Views
4K
Replies
22
Views
5K
Replies
6
Views
1K
Replies
1
Views
1K
Replies
2
Views
2K