Particle acceleration and eV's question from a newbie

AI Thread Summary
The discussion clarifies the concept of electron volts (eV) in the context of particle acceleration, noting that 3.4 eV is required to ionize a hydrogen atom from its N=2 state. It explains that once a proton is isolated, it can be accelerated in a particle accelerator, with energy levels for collisions varying significantly based on the desired physics, ranging from a few eV to several TeV. The LHC, for instance, can reach energies of 7 TeV, which is necessary for probing fundamental particles. The conversation emphasizes that while 3.4 eV is needed for ionization, much higher energies are required for particle collisions and to create new particles. Understanding these energy levels is crucial for experiments in atomic and particle physics.
kenw232
Messages
9
Reaction score
0
I have a general question on particle acceleration and eV's. Apparently the amount of electron Volts required to ionize a hydrogen atom (that is, remove the electron from the proton), is 3.4 eV (When N = 2, the energy level is -13.6 eV / 2^2 = -3.4 eV). if initially the atom is in the state N = 2? (Remember that N = 1 if the atom is in the lowest energy level.. Source: https://answers.yahoo.com/question/index?qid=20080710121847AA33ZKz

Once the proton is isolated I can fire it into a particle accelerator correct? And this 3.4eV is generally what is talked about for energy levels for large accelerators correct? Like the LHC can reach 7TeV. What particles then would require that much energy to be stripped? I'm confused exactly what the eV measurement means for particle accelerators. If I just wanted to create a proton, speed it up, and collide it with something what energy level would I be looking at? Just the 3.4eV roughly?
 
Physics news on Phys.org
There's a few ideas mixed in together here.

An electron volt is an energy unit - one electron Volt is the amount of energy that an electron has in a potential of one Volt. Thus, 7 TeV is equivalent to the energy of one electron in a potential of 7*10^12 Volts. It's very useful in particle/nuclear/atomic physics experiments, because it's easy to figure out that if I want a 1 MeV proton, I'd better make an electric potential of a million volts, or if I want a 1 MeV carbon beam, I can use one million volts if I get rid of 1 electron, or 500 KV if I get rid of two. And so on.

The "size" of the numbers are also convenient. I know that atomic physics works on meV - eV, and nuclear physics works on keV - MeV scales, and Particle physics on GeV-TeV. It's just another energy unit, but Joules aren't as useful in this context, but neither are eV if I'm talking about the energy I get from food.

kenw232 said:
Once the proton is isolated I can fire it into a particle accelerator correct?
You can accelerate any charged particle. Some accelerators work with injecting positive ions, some work with injecting negative ions. It doesn't matter too much, as long as it's charged. The amount of acceleration is proportional to the charge state, as I mentioned above.

kenw232 said:
Like the LHC can reach 7TeV. What particles then would require that much energy to be stripped?
The eV is just a measure of energy. So you can use it to measure the amount of energy required to strip an electron from hydrogen, or you can use it to measure the kinetic energy of a beam in a particle accelerator. So, protons in the LHC have been accelerated through an equivalent potential of 7TeV. (NB: This isn't a static potential in the LHC, but a RF field, but that's a bit beyond this conversation).

kenw232 said:
f I just wanted to create a proton, speed it up, and collide it with something what energy level would I be looking at? Just the 3.4eV roughly?
You require 3.4 eV just to make an ion. When you do particle collisions, you require enough energy for the ions to interact. Depending on the kind of physics you want to probe, this is anything from a few eV (atomic physics) through to TeV (particle physics) - the "smaller" the thing you want to look at, the more energy you need.
 
Thanks for the help.
 
Ground state hydrogen does not have electrons in the N=2 state, so you need more energy - 13.6 V for a single hydrogen atom, for a hydrogen molecule it is a bit more complicated. Compared to the energy used for acceleration afterwards, that value is negligible. You need the TeV energy to produce new, heavy particles (much heavier than the proton).
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top