Particles and antiparticles in compex field

spookyfish
Messages
53
Reaction score
0
Hi. I am confused about something related to the creation of particles/antiparticles in a complex scalar field.
I read in the literature that \phi(x)|0\rangle describes the creation of a particle at point x. But given that

\phi(x) = \int \frac{d^3 p}{\sqrt{(2\pi)^3 2E_p}} \left(a(p)e^{-ipx}+b^\dagger (p)e^{ipx}\right)

then in \phi(x)|0\rangle only the b^\dagger(p) term contributes, i.e.

\phi(x)|0\rangle= \int \frac{d^3 p}{\sqrt{(2\pi)^3 2E_p}}e^{ipx} b^\dagger(p)|0\rangle

from which it seems that an anti-particle (created by b^\dagger(p)) is created at x.
 
Physics news on Phys.org
We don't have the original text that you read around to nitpick, but if ##\phi(x)## creates the antiparticle, then ##\phi^\dagger(x)## creates the particle. The original reference could have been

1. sloppy
2. using a different definition of particle vs antiparticle
3. referring to a real scalar field

etc. We simply can't be sure without knowing precisely what you read and the context in which the author stated that.
 
Thanks. In fact, my problem was with something I read in the internet related to the literature, and I think it was simply wrong, so the definitions I wrote above work.
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...

Similar threads

Back
Top