Peano Existence Theorem confusion

LumenPlacidum
Messages
40
Reaction score
0
I'm working on a proof of the Peano Existence Theorem. It says that:

For a continuous ordinary differential equation dx/dt = f(x, t), where x is in R^n and f is continuous on |t-t_0|<=a, ||x-x_0||<=b

when you have an initial value, x(t_0) = x_0, then there is a solution on |t-t_0|<= c, 0<c<=a.

Wikipedia has a pretty relevant statement of the theorem, though I'm trying it for dimensions higher than one. My confusion is more easily described by their statement at http://en.wikipedia.org/wiki/Peano_existence_theorem

They say that the function f is defined so that it satisfies the ODE on its interval of definition, then why can't you just use any continuous function y(x) as the z(x) in that explanation? It just seems like the second line of the statement of the theorem shows that such a solution exists.

If anyone has some insights to offer, I'd be much obliged.
 
Physics news on Phys.org
LumenPlacidum said:
They say that the function f is defined so that it satisfies the ODE on its interval of definition, then why can't you just use any continuous function y(x) as the z(x) in that explanation? It just seems like the second line of the statement of the theorem shows that such a solution exists.

If anyone has some insights to offer, I'd be much obliged.

No, they don't say f satisfies the ODE. It is y(x) that satisfies the ODE y' = f(x,y) where the assumption on f is continuity.
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...

Similar threads

Back
Top