Undergrad Phase space integral in noninteracting dipole system

Click For Summary
SUMMARY

The discussion focuses on the phase space integral for a system of N noninteracting identical electric point dipoles with dipole moment μ in an external field E. The Lagrangian and Hamiltonian are defined, highlighting the need for five sets of generalized coordinates, including spherical angles θ and φ. The user questions the integration over cyclic momenta pθ and pφ, expressing concern about the potential divergence of the integral due to their positive real values. The discussion emphasizes the importance of understanding the treatment of cyclic coordinates in statistical mechanics.

PREREQUISITES
  • Understanding of Lagrangian and Hamiltonian mechanics
  • Familiarity with phase space and partition functions
  • Knowledge of cyclic coordinates in classical mechanics
  • Basic concepts of statistical mechanics
NEXT STEPS
  • Study the derivation of partition functions in statistical mechanics
  • Learn about the treatment of cyclic coordinates in Hamiltonian systems
  • Explore the implications of integrating over momenta in phase space
  • Investigate the role of dipole moments in external fields
USEFUL FOR

Physicists, particularly those specializing in statistical mechanics, classical mechanics, and electromagnetism, as well as graduate students seeking to deepen their understanding of phase space integrals in noninteracting systems.

raisins
Messages
3
Reaction score
1
Hi all,

Consider a system of ##N## noninteracting, identical electric point dipoles (dipole moment ##\vec{\mu}##) subjected to an external field ##\vec{E}=E\hat{z}##. The Lagrangian for this system is
$$L=T-V=\sum_{i=1}^N\left\{\frac{m\dot{\vec{r}_i}^2}{2}+\vec{\mu}_i\cdot\vec{E}\right\}=\sum_{i=1}^N\left\{\frac{m\dot{\vec{r}_i}^2}{2}+E\mu\cos\theta_i\right\}$$
and the Hamiltonian is
$$H=\sum_{i=1}^N\left\{\frac{\vec{p}_i^2}{2m}-E\mu\cos\theta_i\right\}$$
As I see it, 5 sets of generalized coordinates ##\left(\left\{\vec{r}_i\right\},\left\{\theta_i\right\},\left\{\phi_i\right\}\right)##, where ##\theta_i,\phi_i## are the usual spherical angles, are needed to describe this system. Now, the momenta conjugate to ##\theta_i,\phi_i## (call them ##p_{\theta_i},p_{\phi_i}##) are both cyclic, since ##\dot{\theta}_i,\dot{\phi}_i## appear nowhere in the Lagrangian. But do we not still have to integrate over them to find the partition function; ie.
$$Z=\frac{1}{N!}\int \prod_{i=1}^N\frac{d^3\vec{r}_id^3\vec{p}_i}{h^3}\,\frac{d\theta_idp_{\theta_i}}{h}\,\frac{d\phi_idp_{\phi_i}}{h}e^{-\beta H}$$
But ##p_{\theta_i},p_{\phi_i}\in[0,\infty)## so doesn't that integral blow up? Am I wrong in thinking ##p_{\theta_i},p_{\phi_i}## can take any real, positive value? Or, because they're cyclic, do we just omit them from the integration?

Any help would be appreciated, thank you!
 
Physics news on Phys.org
I am not familiar with momenta conjugate. Taking polar coordinate for both coordinate and momenta spaces
dv=r^2 sin^2\theta dr d\theta d\phi
dV=R^2 sin^2\Theta dR d\Theta d\Phi
where I noted small r for coordinate space and capital R for momentum space.
So in total number of states in infinitesimal phase space elements is
\frac{\prod_{i=1}^N dv_idV_i}{h^{3N}}
 
Last edited:
raisins said:
But ##p_{\theta_i},p_{\phi_i}\in[0,\infty)## s
From where this comes from?
 
In sci-fi when an author is talking about space travellers or describing the movement of galaxies they will say something like “movement in space only means anything in relation to another object”. Examples of this would be, a space ship moving away from earth at 100 km/s, or 2 galaxies moving towards each other at one light year per century. I think it would make it easier to describe movement in space if we had three axis that we all agree on and we used 0 km/s relative to the speed of...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 25 ·
Replies
25
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K