Physical Meaning of r in BL Coordinates

marschmellow
Messages
47
Reaction score
0
Not much else to say other than the title. In the Schwarzschild spacetime, the radial coordinate r didn't represent radial distance, but it at least represented the thing that determines the area of a sphere centered on the large mass. It doesn't seem like that interpretation can be given to the Boyer-Lindquist r, but can any other physical interpretation be given to it?

Thanks in advance.
 
Physics news on Phys.org
marschmellow, Yes, the radial coordinate r used in the Boyer-Lindquist version of the Kerr metric has an important physical meaning, but it's not as easy to visualize geometrically as the Schwarzschild coordinate r. The reason is that Kerr (and also Kerr-Newman and Kerr-NUT) are best understood as complexified generalizations of Schwarzschild. Consequently, the geometric meaning of r is also complexified.

Note the factor r2 + a2 cos2 θ that appears in the metric in several places? (It's often abbreviated ∑.) This factor is really the norm of a complex radial quantity, ρ ≡ r + ia cos θ.

The geometrical significance of ρ is tied most directly to the Weyl tensor rather than the metric. Both Schwarzschild and Kerr are examples of what are called Type D metrics. Which means that in an appropriately chosen frame, only one component of the Weyl tensor survives. For Schwarzschild, the Weyl tensor falls off cubically with distance, Ψ2 = M/r3. The "geometrical significance" of r is therefore, r = constant are the surfaces on which the spacetime curvature is constant. For Kerr, Ψ2 = m/ρ3. The last expression is complex, so actually there are two curvature components, the real and imaginary parts of Ψ2.
 
Bill_K said:
marschmellow, Yes, the radial coordinate r used in the Boyer-Lindquist version of the Kerr metric has an important physical meaning, but it's not as easy to visualize geometrically as the Schwarzschild coordinate r. The reason is that Kerr (and also Kerr-Newman and Kerr-NUT) are best understood as complexified generalizations of Schwarzschild. Consequently, the geometric meaning of r is also complexified.

Note the factor r2 + a2 cos2 θ that appears in the metric in several places? (It's often abbreviated ∑.) This factor is really the norm of a complex radial quantity, ρ ≡ r + ia cos θ.

The geometrical significance of ρ is tied most directly to the Weyl tensor rather than the metric. Both Schwarzschild and Kerr are examples of what are called Type D metrics. Which means that in an appropriately chosen frame, only one component of the Weyl tensor survives. For Schwarzschild, the Weyl tensor falls off cubically with distance, Ψ2 = M/r3. The "geometrical significance" of r is therefore, r = constant are the surfaces on which the spacetime curvature is constant. For Kerr, Ψ2 = m/ρ3. The last expression is complex, so actually there are two curvature components, the real and imaginary parts of Ψ2.
Great answer. Thank you so much!
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top