Physical Meaning of r in BL Coordinates

marschmellow
Messages
47
Reaction score
0
Not much else to say other than the title. In the Schwarzschild spacetime, the radial coordinate r didn't represent radial distance, but it at least represented the thing that determines the area of a sphere centered on the large mass. It doesn't seem like that interpretation can be given to the Boyer-Lindquist r, but can any other physical interpretation be given to it?

Thanks in advance.
 
Physics news on Phys.org
marschmellow, Yes, the radial coordinate r used in the Boyer-Lindquist version of the Kerr metric has an important physical meaning, but it's not as easy to visualize geometrically as the Schwarzschild coordinate r. The reason is that Kerr (and also Kerr-Newman and Kerr-NUT) are best understood as complexified generalizations of Schwarzschild. Consequently, the geometric meaning of r is also complexified.

Note the factor r2 + a2 cos2 θ that appears in the metric in several places? (It's often abbreviated ∑.) This factor is really the norm of a complex radial quantity, ρ ≡ r + ia cos θ.

The geometrical significance of ρ is tied most directly to the Weyl tensor rather than the metric. Both Schwarzschild and Kerr are examples of what are called Type D metrics. Which means that in an appropriately chosen frame, only one component of the Weyl tensor survives. For Schwarzschild, the Weyl tensor falls off cubically with distance, Ψ2 = M/r3. The "geometrical significance" of r is therefore, r = constant are the surfaces on which the spacetime curvature is constant. For Kerr, Ψ2 = m/ρ3. The last expression is complex, so actually there are two curvature components, the real and imaginary parts of Ψ2.
 
Bill_K said:
marschmellow, Yes, the radial coordinate r used in the Boyer-Lindquist version of the Kerr metric has an important physical meaning, but it's not as easy to visualize geometrically as the Schwarzschild coordinate r. The reason is that Kerr (and also Kerr-Newman and Kerr-NUT) are best understood as complexified generalizations of Schwarzschild. Consequently, the geometric meaning of r is also complexified.

Note the factor r2 + a2 cos2 θ that appears in the metric in several places? (It's often abbreviated ∑.) This factor is really the norm of a complex radial quantity, ρ ≡ r + ia cos θ.

The geometrical significance of ρ is tied most directly to the Weyl tensor rather than the metric. Both Schwarzschild and Kerr are examples of what are called Type D metrics. Which means that in an appropriately chosen frame, only one component of the Weyl tensor survives. For Schwarzschild, the Weyl tensor falls off cubically with distance, Ψ2 = M/r3. The "geometrical significance" of r is therefore, r = constant are the surfaces on which the spacetime curvature is constant. For Kerr, Ψ2 = m/ρ3. The last expression is complex, so actually there are two curvature components, the real and imaginary parts of Ψ2.
Great answer. Thank you so much!
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
Back
Top