MHB Physics Spring Compression Equation

  • Thread starter Thread starter Dethrone
  • Start date Start date
  • Tags Tags
    Physics Spring
Click For Summary
To calculate the compression of a spring when a mass is dropped from a height, the appropriate equation to use is mgL = (1/2)k(Δx)^2 - mgΔx, as it accounts for both gravitational potential energy and the energy stored in the spring. The discussion emphasizes the importance of considering the gravitational force acting on the mass during compression. Energy conservation principles are highlighted, indicating that the initial gravitational potential energy is converted into the spring's potential energy. The choice of origin for potential energy is also noted, typically set at the top of the uncompressed spring. This approach ensures accurate calculations of spring compression.
Dethrone
Messages
716
Reaction score
0
Suppose a mass, $m$, is dropped from a height $L$ relative to the top of a uncompressed spring, which is on the surface of the floor. Calculate the compression, $\Delta x$ of the spring, given the mass.

Okay, so I completely made up this question, but here is my confusion:

Which equation is appropriate to solve this?

$$mgL=\frac{1}{2}k(\Delta x)^2-mg \Delta x$$

OR

$$mgL=\frac{1}{2}k\Delta x^2$$
 
Last edited:
Mathematics news on Phys.org
Do you have any information regarding the stiffness of the spring? Are you considering that the weight of the mass is still working on the spring as it's being compressed?
 
All needed values are given, including $k$. I'm not sure whether or not the mass is still working on it...the question (from my test) was simply the effect of the mass dropping on an uncompressed spring, and finding its compression/deflection, or whatever you want to call it :D
 
Rido12 said:
All needed values are given, including $k$. I'm not sure whether or not the mass is still working on it...the question (from my test) was simply the effect of the mass dropping on an uncompressed spring, and finding its compression/deflection, or whatever you want to call it :D

Well, obviously energy considerations are the way to go here, as you are doing. The initial gravitational potential energy, will be converted into the potential energy of the spring.

I would say your first equation is correct, since it accounts for the additional gravitational energy lost during compression.
 
Rido12 said:
Which equation is appropriate to solve this?

$$mgL=\frac{1}{2}k(\Delta x)^2-mg \Delta x$$
Looks good to me. Typically we set an origin for the spring potential energy to be at the top of the uncompressed spring as the spring has no PE there and choose a positive direction in the direction of the spring compression. So you can actually get rid of the deltas there.

-Dan
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
29
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 27 ·
Replies
27
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K