Plane lattice proof of Leibniz series

qedetc
Messages
1
Reaction score
0
(nevermind, answered my own question after spending the time to type this up!)

Hi,

I was flipping through Hilbert's Geometry and the Imagination, and in it, he includes a proof of Leibniz' series ( pi/4 = 1 - 1/3 + 1/5 - 1/7 + ... ) which is carried out by estimating the area of a circle at the origin using unit squares. I have a simple question about the appearance of a single " - 1" in the proof, but unfortunately need to describe half of the proof to ask about it. I assume I'm overlooking something extremely easy, but I just haven't been able to see why it's there.

The proof utilizes a theorem regarding the number of ways to express an integer n as the sum of squares of two integers: that this number is 4 times the quantity ( number of factors of n which are congruent to 1 mod 4 minus the number of factors of n which are congruent to 3 mod 4). In symbols,
S_n = | {(a,b) : a^2 + b^2 = n } | = 4 * (|{ d : d divides n and d = 1 mod 4 }| - |{ d : d divides n and d = 3 mod 4 }|)
where S_n is the number of ways to express n as the sum of two squares, and || is for the size of the set.

The main idea is to use this theorem to determine the number of unit squares whose bottom left corner is contained inside a circle of radius r; we'll call this number f(r). Now, Hilbert says that according to the above theorem, we can get (1/4)(f(r) - 1) by adding up the differences between the number of factors of the form 4k+1 and the number of factors of the form 4k+3 for all of the n <= r^2.

My question is regarding this "-1" in the "(1/4)(f(r) - 1)". Since you have a point inside/on the circle for each pair of integers (x,y) satisfying x^2 + y^2 <= r^2, it seems that f(r) should be the sum of the S_n for each integer n less than or equal to r^2. Then f(r) - 1 would be the sum over all of the S_n, minus 1. Further, (1/4)(f(r) - 1) would be the sum over all of the S_n, minus 1, all divided by 4; that is, -(1/4) + the sum of the differences between the number of factors of the form 4k+1 and the number of factors of the form 4k+3 for each n. So, it looks to me like that -1 doesn't fit (because it causes f(r) to differ from the sum Hilbert claims by -(1/4). I don't see where it came from, but I imagine I'm overlooking something incredibly simple.Thanksedit: Well, after typing this out, I reread the section again and noticed I had been completely ignoring that he starts discussing only the positive n's. Subtracting the 1 then takes care of the (0,0) solution.
 
Last edited:
Physics news on Phys.org
Welcome to PF!

Hi qedetc! :smile:

(try using the X2and X2 tags just above the Reply box :wink:)
qedetc said:
(nevermind, answered my own question after spending the time to type this up!)

A lot of people do that! :wink:

Welcome to PF anyway! :smile:
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top