Point charges and multipole expansion

  1. Shyan

    Shyan 1,697
    Gold Member

    Consider the following charge distribution:A positive charge of magnitude Q is at the origin and there is a charge -Q on each of the x,y and z axes a distance d from the origin.
    I want to expand the potential of this charge distribution using spherical coordinates.Here's how I did it:
    [itex]
    \phi=\frac {Q} {4\pi \varepsilon_0} \left[ \frac{1}{r} - \frac{1}{\sqrt{r^2+d^2-2rd \cos\theta}}- \frac{1}{\sqrt{r^2+d^2-2rd \cos\gamma_1}}- \frac{1}{\sqrt{r^2+d^2-2rd \cos\gamma_2}}\right]=\\
    \frac {Q} {4\pi \varepsilon_0 r} \left[ 1 - \frac{1}{\sqrt{1+(\frac d r)^2-2 \frac d r \cos\theta}}- \frac{1}{\sqrt{1+(\frac d r)^2-2\frac d r \cos\gamma_1}}- \frac{1}{\sqrt{1+(\frac d r)^2-2\frac d r \cos\gamma_2}}\right]=\\
    \frac {Q} {4\pi \varepsilon_0 r} \left[
    1-\sum_{n=0}^\infty P_n(\cos\theta) (\frac d r)^n-\sum_{n=0}^\infty P_n(\cos\gamma_1) (\frac d r)^n-\sum_{n=0}^\infty P_n(\cos\gamma_2) (\frac d r)^n
    \right]=\\
    \frac {Q} {4\pi \varepsilon_0 r} \left[
    1-\sum_{n=0}^\infty P_n(\cos\theta) (\frac d r)^n-\sum_{n=0}^\infty \frac{4\pi}{2n+1} (\frac d r)^n\sum_{m=-n}^n Y^{m*}_n(\frac \pi 2,0) Y^m_n(\theta,\varphi)-\sum_{n=0}^\infty \frac{4\pi}{2n+1} (\frac d r)^n\sum_{m=-n}^n Y^{m*}_n(\frac \pi 2,\frac \pi 2) Y^m_n(\theta,\varphi)\right]
    [/itex]
    The monopole term(n=0) is [itex] \phi^{(1)}=-\frac{2Q}{4\pi \varepsilon_0 r } [/itex],as it should be.
    My problem is, the dipole term(n=1) turns out to be complex.What's wrong?
    Thanks
     
  2. jcsd
  3. Meir Achuz

    Meir Achuz 2,059
    Science Advisor
    Homework Helper
    Gold Member

    P_n is clearly real. You are making some algebraic mistake with the e^{i\phi}.
    Be careful about factors like (-1)^m which differ in different textbooks.
     
  4. Shyan

    Shyan 1,697
    Gold Member

    The dipole term is:
    [itex]
    \phi^{(2)}=\frac{Qd}{4\pi\varepsilon_0r^2} \left\{P_1(\cos\theta)- \frac{4\pi}{ 3 } \left[\left(Y^{-1*}_1(\frac \pi 2,0)+Y^{-1*}_1(\frac \pi 2,\frac \pi 2)\right) Y^{-1}_1(\theta,\varphi)\\+\left(Y^{0*}_1(\frac \pi 2,0)+Y^{0*}_1(\frac \pi 2,\frac \pi 2)\right)Y^0_1(\theta,\varphi)\\+\left(Y^{1*}_1(\frac \pi 2,0) +Y^{1*}_1(\frac \pi 2,\frac \pi 2)\right)Y^1_1(\theta,\varphi)\right]\right\}
    [/itex]
    The definition I use for spherical harmonics is:
    [itex]
    Y^m_n(\theta,\varphi)=\sqrt{ \frac{2n+1}{4\pi} \frac{ (n-m)! }{ (n+m)! } } P^m_n(\cos\theta) e^{im\varphi}
    [/itex]
    So we have:
    [itex]
    Y^{-1}_1=\frac 1 2 \sqrt{\frac{3}{2\pi}}\sin\theta e^{-i\varphi}\\
    Y^0_1=\frac 1 2 \sqrt{\frac 3 {2\pi}}\cos\theta\\
    Y^1_1=-\frac 1 2 \sqrt{\frac{3}{2\pi}}\sin\theta e^{i\varphi}\\
    [/itex]
    And:
    [itex]
    Y^{-1*}_1(\frac \pi 2,0)=\frac 1 2 \sqrt{\frac3 {2\pi}}\\
    Y^{-1*}_1(\frac \pi 2,\frac \pi 2)=\frac 1 2 \sqrt{\frac3 {2\pi}}e^{i \frac \pi 2}=\pm i \frac 1 2 \sqrt{\frac3 {2\pi}}\\
    Y^{0*}_1(\frac \pi 2,\varphi)=0\\
    Y^{1*}_1(\frac \pi 2,0)=-\frac 1 2 \sqrt{\frac 3 {2\pi}}\\
    Y^{1*}_1(\frac \pi 2,\frac \pi 2)=-\frac 1 2 \sqrt{\frac 3 {2\pi}}e^{-i \frac \pi 2}=\pm i \frac 1 2 \sqrt{\frac 3 {2\pi}}
    [/itex]
    So we'll have:
    [itex]
    \phi^{(2)}=\frac{Qd}{4\pi \varepsilon_0 r^2} \left\{ \cos\theta-\left( 1\pm i \right)\sin\theta e^{-i\varphi}+\left( -1\pm i \right)\sin\theta e^{i\varphi} \right\}=\\ \frac{Qd}{4\pi \varepsilon_0 r^2} \left\{ \cos\theta-\sin\theta e^{-i\varphi}\mp i \sin\theta e^{-i\varphi} -\sin\theta e^{i\varphi}\pm i \sin\theta e^{i\varphi} \right\}=\\ \frac{Qd}{4\pi \varepsilon_0 r^2} \left\{ \cos\theta-\sin\theta (e^{i\varphi}+e^{-i\varphi}) \pm i \sin\theta ( e^{i\varphi}-e^{-i\varphi} ) \right\}=\\ \frac{Qd}{2\pi \varepsilon_0 r^2} \left\{ \frac 1 2 \cos\theta-\sin\theta \left[ \cos\varphi \mp \sin\varphi\right] \right\}
    [/itex]
    What's wrong?

    EDIT:
    I found what was wrong.
    Ok,another question.How can I decide which sign is the right one for the [itex] \sin\varphi [/itex]?
    Thanks
     
    Last edited: Feb 19, 2014
  5. Meir Achuz

    Meir Achuz 2,059
    Science Advisor
    Homework Helper
    Gold Member

    [itex]e^{i\pi/2}=+i[/itex].
     
  6. Shyan

    Shyan 1,697
    Gold Member

    Ok,So we have:
    [itex]
    \phi^{(2)}=\frac{Qd}{2\pi \varepsilon_0 r^2} \left[ \frac 1 2 \cos\theta - \sin\theta \left( \cos\varphi-\sin\varphi\right) \right]
    [/itex]
    But we can also use the formulas [itex]\vec{p}=\int \vec{r} \rho dV [/itex] and [itex] \phi^{(2)}=\frac{\vec{p}\cdot\vec{r}} {4\pi \varepsilon_0 r^3} [/itex] and we should arrive at the same result.But when I use the charge density [itex] \rho=Q \left[ \delta(x)\delta(y)\delta(z)-\delta(x-d)\delta(y)\delta(z)-\delta(x)\delta(y-d)\delta(z)-\delta(x)\delta(y)\delta(z-d) \right] [/itex], I'll get [itex] \vec{p}=-Qd(\hat{x}+\hat{y}+\hat{z}) [/itex] and [itex] \phi^{(2)}=-\frac{Qd(x+y+z)}{4\pi \varepsilon_0 r^3}=-\frac{Qd}{4\pi \varepsilon_0 r^2}\left[ \cos\theta+\sin\theta \left(\cos\varphi+\sin\varphi\right)\right][/itex] which differs from the result obtained above.I can't see why this happens!
     
  7. Meir Achuz

    Meir Achuz 2,059
    Science Advisor
    Homework Helper
    Gold Member

    The signs and algebra for Y^m_L and P^m_L are tricky. I use (-1)^m in the definition of Y^m_L.
    How do you define P^{-m}_L? Your Y^0_1 n your first post seems wrong.
    Check everything. Get all your signs from the same place.
     
  8. Shyan

    Shyan 1,697
    Gold Member

  9. Meir Achuz

    Meir Achuz 2,059
    Science Advisor
    Homework Helper
    Gold Member

    Your Y^0_1 is wrong and you lost a factor of 1/2 elsewhere. There must also be a mistake in sign that I don't readily see.
     
Know someone interested in this topic? Share a link to this question via email, Google+, Twitter, or Facebook

Have something to add?

0
Draft saved Draft deleted