MHB Poisson Distribution: Prob of <=3 Wrong Connections in Building

AI Thread Summary
The discussion revolves around calculating the probability of at most 3 wrong connections in a building with two independent telephone exchanges, A and B, modeled as Poisson variables. Exchange A has a parameter of 0.5, while exchange B has a parameter of 1. The user initially attempted to calculate this probability using a specific formula but found the answer to be incorrect. The correct approach involves using the conditional probability formula, specifically P(X+Y≤3|X≥2), which incorporates the probabilities of different combinations of wrong connections. The conversation emphasizes the importance of correctly applying the Poisson distribution in this context.
Punch
Messages
44
Reaction score
0
A building has 2 independent automatc telephone exchanges A and B. The number X of wrong connections for A in anyone day is a poisson variable with parameter 0.5 and the number Y of wrong connections for B in any one day is a poisson variable with parameter 1.

Calculate in any particular day, the probability that there will be at most 3 wrong connections in the building given X≥2

I tried using P(X=2)P(Y=0)+P(X=2)P(Y=1)+P(X=3)P(Y=0) but the answer was wrong
 
Mathematics news on Phys.org
Punch said:
A building has 2 independent automatc telephone exchanges A and B. The number X of wrong connections for A in anyone day is a poisson variable with parameter 0.5 and the number Y of wrong connections for B in any one day is a poisson variable with parameter 1.

Calculate in any particular day, the probability that there will be at most 3 wrong connections in the building given X≥2

I tried using P(X=2)P(Y=0)+P(X=2)P(Y=1)+P(X=3)P(Y=0) but the answer was wrong

\[P(X+Y\le 3|X\ge 2)=\frac{P(X=3)P(Y=0)+P(X=2)P(Y\le 1)}{P(X\ge 2)}\]CB
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top