Poisson distribution problem help

gfields
Messages
2
Reaction score
0
I need help with aPoisson distribution problem please. Question is: company capable of handling 5 calls every 10 min on new system. Prior to new system, company analysts determined incoming calls to the system are Poisson distributed w/ a mean equal to 2 every 10 min. what is the probability that in a 10 min period more calls will arrive than the system can handle?
 
Mathematics news on Phys.org
Hi gfields! :smile:

What have you tried?

Obviously, we're going to work with a random variable X such that X is Poisson(\lambda) distributed. What do you think \lambda is in this case?
 
I am taking this class online...no instructor...no interaction. I need some guidance on how to think this through. The book is helpful but still lacks clarity.

I understand that the mean before the old system was 2 calls for 10 minutes.

I need to define the segment unit to do the problem... 10 minutes??
The mean is already defined for me. 2
Defining the segment size would be next. I need some discussion here to understand exactly what to use.The event of interest would be P>5 correct?

Once this information is calculated...the Poisson table can be used to find the probability and a comment on the adequacy of the new system can be made.
 
gfields said:
I am taking this class online...no instructor...no interaction. I need some guidance on how to think this through. The book is helpful but still lacks clarity.

I understand that the mean before the old system was 2 calls for 10 minutes.

I need to define the segment unit to do the problem... 10 minutes??

Good!

The mean is already defined for me. 2

Also good.

Defining the segment size would be next. I need some discussion here to understand exactly what to use.The event of interest would be P>5 correct?

Indeed, you'll need to calculate P\{X>5\}. You can use tables to calculate this, but you can also do it by hand easily:

P\{X>5\}=1-P\{X\leq 5\}=1-e^{-2}(1+2+\frac{2^2}{2!}+\frac{2^3}{3!}+\frac{2^4}{4!}+\frac{2^5}{5!})
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top