Polarization charge density of homogeneous dielectric

AI Thread Summary
The discussion centers on the polarization charge density in homogeneous dielectrics under non-uniform electric fields. It highlights the relationship between the polarization vector P, the electric induction vector D, and the divergence of these quantities, specifically addressing the condition where divD=0 implies divP=0. The confusion arises from the assertion that polarization charges only exist on the surfaces of dielectrics, despite the general equation indicating that divP can be non-zero when an electric field is applied. The conversation also explores specific geometries, such as slabs and spheres, where uniform polarization leads to zero divergence and surface charge density. Overall, the complexities of polarization in various dielectric shapes are acknowledged, emphasizing the need for careful analysis in electrostatics.
Roadtripper
Messages
4
Reaction score
2
Hi everyone,
there's something that I can't comprehend: when a homogeneous is in a conservative and non-uniform in module electric field polarization expression is given by P0χE. Supposing the most general situation there's: divPp where ρp is the polarization charge density in the dielectric. When my textbook introduces the electric induction vector D0E + P it says that divD=0 if in the volume (the dielectric material) you are going to integrate the divergence there are no free charges and it makes absolutely sense. Troubles have come in my mind when it states that this means divPp=0 too because "every electrostatic field makes the variation end up with 0". I mean what's the characteristic of electrostatic conservative non-uniform (in module) fields to make divP=0? I think I missed some logics here. I mean, why does it jump to the conclusion that polarization charges are only located on the surfaces of the dielectric material?
 
Physics news on Phys.org
In general ## \nabla \cdot P=\rho_p ## is not equal to zero in a dielectric material when an electric field is applied. There are a couple of geometries where a uniform polarization ## P ## in the material results from an applied uniform external electric field , because the polarization charge forms in such a manner on the surface of the solid, that its electric field, ## E_p ##, (inside the material), added to the applied electric field ## E_o ##, results in a uniform ## E_i ## in the material and thereby a uniform ## P ##. A uniform ## P ## will have zero divergence,(and thereby ## \rho_p=0 ##), and surface polarization charge density is ## \sigma_p =P \cdot \hat{n} ##. ## \\ ##This self-consistent uniform ## P ## case happens in the case of a dielectric slab, where the electric field from the surface polarization charges ## E_p=-\frac{P}{\epsilon_o} ## , and also for a dielectric sphere, where ## E_p=-\frac{P}{3 \epsilon_o} ##. For most geometric shapes, in an applied electric field that is uniform, the resulting ## P ## is not uniform, and the resulting electric field, along with the resulting polarization will be quite complex.## \\ ## One other case where a simple self-consistent solution occurs is a cylinder turned sideways. For that case ## E_p=-\frac{P}{2 \epsilon_o} ##. These simple cases can be readily solved by writing ## E_i=E_o+E_p ##, and ## P=\epsilon_o \chi E_i ##. Since ## E_p=-\frac{D P}{\epsilon_o } ##, where ## D ## is the geometric factor for a particular geometry, it is a simple matter of solving two equations for the two unknowns: ## E_i ## and ## P ##. ## \\ ## For most cases, there is no constant ## D ##, like there is for the 3 cases mentioned above. (## D=1 ## for a slab, ## D=\frac{1}{3} ## for a sphere, and ## D=\frac{1}{2} ## for a cylinder that is turned sideways). ## \\ ## Additional note: Outside the material, ## E_p =0 ## for the dielectric slab. For the sphere and cylinder geometries, ## E_p ## outside the material has a somewhat complex form, and the solution for those cases is presented in advanced E&M courses.
 
Last edited:
  • Like
Likes vanhees71, berkeman and Roadtripper
Thank you so much!
 
  • Like
Likes Charles Link
One typo/correction: The first line of post 2 should read ## -\nabla \cdot P=\rho_p ## with a minus sign in the equation.
 
  • Like
Likes vanhees71
This is from Griffiths' Electrodynamics, 3rd edition, page 352. I am trying to calculate the divergence of the Maxwell stress tensor. The tensor is given as ##T_{ij} =\epsilon_0 (E_iE_j-\frac 1 2 \delta_{ij} E^2)+\frac 1 {\mu_0}(B_iB_j-\frac 1 2 \delta_{ij} B^2)##. To make things easier, I just want to focus on the part with the electrical field, i.e. I want to find the divergence of ##E_{ij}=E_iE_j-\frac 1 2 \delta_{ij}E^2##. In matrix form, this tensor should look like this...
Thread 'Applying the Gauss (1835) formula for force between 2 parallel DC currents'
Please can anyone either:- (1) point me to a derivation of the perpendicular force (Fy) between two very long parallel wires carrying steady currents utilising the formula of Gauss for the force F along the line r between 2 charges? Or alternatively (2) point out where I have gone wrong in my method? I am having problems with calculating the direction and magnitude of the force as expected from modern (Biot-Savart-Maxwell-Lorentz) formula. Here is my method and results so far:- This...
Back
Top