Polynomials: Theory and Problems to Solve

  • Thread starter Thread starter jonas.hall
  • Start date Start date
  • Tags Tags
    Classes Polynomial
AI Thread Summary
The discussion centers on two polynomial problems, exploring their theoretical foundations and methods for solving them. The first problem involves demonstrating the existence of infinitely many integer coefficient polynomials satisfying a specific equation, with suggestions to analyze the coefficients through an ansatz. The second problem questions whether real polynomials can satisfy a similar equation with a positive constant, prompting a similar approach to deduce conditions for the coefficients. Participants recommend utilizing algebraic geometry for theoretical insights and numerical algorithms for practical problem-solving. The conversation emphasizes the importance of understanding the coefficients and conditions to find solutions.
jonas.hall
Messages
23
Reaction score
0
Here are two very similar questions about polynomials that I feel may have deeper roots (excuse pun).

a) Does anyone know of any interesting theory related to them that I could read up upon?

b) How would one start solving them?

Here are the problems:

1) Show that there are infinitely many polynomials p with integer coefficients such that P(x^2 - 1) = (P(x))^2 - 1, P(0) =0 .

2) Are there real polynomials p satisfying P(x^2 - 1) = (P(x))^2 + 1 for all x? If so, determine what they look like.

Observe the plus sign at the end of the second problem.
 
Mathematics news on Phys.org
jonas.hall said:
Here are two very similar questions about polynomials that I feel may have deeper roots (excuse pun).

a) Does anyone know of any interesting theory related to them that I could read up upon?
Algebraic geometry.
b) How would one start solving them?
Solve what? If you are looking for roots, then a numerical algorithm is probably the best way to approach the problem. Unless there are additional information on the number of variables, coefficients and degrees.
Here are the problems:

1) Show that there are infinitely many polynomials p with integer coefficients such that ##P(x^2 - 1) = (P(x))^2 - 1, P(0) =0 .##
Make an ansatz ##P(y)=a_ny^n + \ldots +a_1y+a_0## and see what these conditions mean to your coefficients.
2) Are there real polynomials ##P## satisfying ##P(x^2 - 1) = (P(x))^2 + 1## for all ##x##? If so, determine what they look like.

Observe the plus sign at the end of the second problem.
Same idea as above. Assume an arbitrary solution and deduce conditions for the coefficients. If you run into a contradiction, then there won't be a solution. Otherwise the conditions will tell you how to chose ##P##.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top