Loren Booda
- 3,108
- 4
Does either
\frac{\prod_{2N=n}^\infty{p_n}}{\prod_{2N-1=n}^\infty{p_n}}
or
\frac{\sum_{2N=n}^\infty{p_n}}{\sum_{2N-1=n}^\infty{p_n}}
converge, diverge or oscillate, where N are the natural numbers, and pn is the nth prime?
\frac{\prod_{2N=n}^\infty{p_n}}{\prod_{2N-1=n}^\infty{p_n}}
or
\frac{\sum_{2N=n}^\infty{p_n}}{\sum_{2N-1=n}^\infty{p_n}}
converge, diverge or oscillate, where N are the natural numbers, and pn is the nth prime?