MHB Possible title: Linear Optimization Problem: Finding Optimal Solutions

goosey00
Messages
37
Reaction score
0
Linear Optimization Problem follow up

Maximize: z=2x2+5x2+x3
x1+x2+x3 less then or equal to 12
x1-x2 less then or equal to 15
x2+2x3 less then or equal to 10
x1, x2 and x3 is greater then or equal to 0
x1= x2= x3= s1= s2= s3= z=
I get x1=2, x2=10 x3=0 s1=0 s2=0 s3=0 z=0
Is this wrong??
 
Last edited:
Mathematics news on Phys.org
Re: Linear Optimization Problem follow up

goosey00 said:
Maximize: z=2x2+5x2+x3 I assume that the first x2 should be x1.
x1+x2+x3 less then or equal to 12
x1-x2 less then or equal to 15
x2+2x3 less then or equal to 10
x1, x2 and x3 is greater then or equal to 0
x1= x2= x3= s1= s2= s3= z=
I get x1=2, x2=10 x3=0 s1=0 s2=0 s3=0 z=0
Is this wrong??
It looks as though $x_1=2,\ x_2=10,\ x_3=0$ is correct, but why do you get $z=0$? The condition $z=2x_1+5x_2+x_3$ says that $z$ should be 54 for those values of the $x$'s.
 
Re: Linear Optimization Problem follow up

Opalg said:
It looks as though $x_1=2,\ x_2=10,\ x_3=0$ is correct, but why do you get $z=0$? The condition $z=2x_1+5x_2+x_3$ says that $z$ should be 54 for those values of the $x$'s.

So where do you get 54?
BTW-you are right, it was suppose to be 1.
 
Re: Linear Optimization Problem follow up

goosey00 said:
So where do you get 54?
BTW-you are right, it was suppose to be 1.

If you plug in $x_1=2$, $x_2=10$ and $x_3=0$ into $z=2x_1+5x_2+x_3$ you get $z=(2 \times 2) + (5 \times 10) + 0=54$.
 
Re: Linear Optimization Problem follow up

goosey00 said:
Maximize: z=2x2+5x2+x3
x1+x2+x3 less then or equal to 12
x1-x2 less then or equal to 15
x2+2x3 less then or equal to 10
x1, x2 and x3 is greater then or equal to 0
x1= x2= x3= s1= s2= s3= z=
I get x1=2, x2=10 x3=0 s1=0 s2=0 s3=0 z=0
Is this wrong??

Hi goosey00, :)

You can check the optimal solutions of linear programming problems >>here<<.

Kind Regards,
Sudharaka.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top