MHB Possible webpage title: Which Primes Make p!+p a Perfect Square?

  • Thread starter Thread starter alexmahone
  • Start date Start date
  • Tags Tags
    Square
AI Thread Summary
The discussion focuses on identifying prime numbers p for which the expression p! + p is a perfect square. The initial findings confirm that for p = 2 and p = 3, the expression yields perfect squares. Using Wilson's theorem, the relationship p! + p = p[(p-1)! + 1] is established, indicating that (p-1)! + 1 must be divisible by p. Further analysis suggests that for larger primes, the factorial grows too rapidly, making it unlikely for p! + p to equal a perfect square. The conversation highlights the complexity of the problem and the difficulty in extending the findings beyond small primes.
alexmahone
Messages
303
Reaction score
0
Find all prime numbers p for which p!+p is a perfect square.

My thoughts: 2!+2 and 3!+3 are perfect squares.
p!+p=p[(p-1)!+1]
By Wilson's theorem, (p-1)!+1 is divisible by p. Now I'm stuck.
 
Last edited:
Mathematics news on Phys.org
Alexmahone said:
Find all prime numbers p for which p!+p is a perfect square. My thoughts: 2!+2 and 3!+3 are perfect squares. p!+p=p[(p-1)!+1] By Wilson's theorem, (p-1)!+1 is divisible by p. Now I'm stuck.
Well, you are almost done. (p - 1)! + 1 = kp p! + p = kp^2 so we see that k must be a perfect square to satisfy your condition. let k = m^2 p!+p = (mp)^2 also p!+p = c^2 c^2 = (mp)^2 p = c/m now if m = 1 then c = p and p!+p = p^2 that's only going to happen for 2!, 3! cause they have few products. As the primes get larger than 3 the p! has too many products destroying any possibility that p!+p = p^2 Now I'm stuck cause i can't think of a good reason why m can't be any other positive integer...

---------- Post added at 07:05 PM ---------- Previous post was at 07:03 PM ----------

why are all the sentences getting bunched up??
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top