Precession of a spherical top in orbit around a rotating star

Click For Summary
SUMMARY

The discussion focuses on the precession of a spherical top in orbit around a rotating star, specifically analyzing Lagrangian mechanics as presented in L&L's solution to problem four of section §106. The Lagrangian is expressed as a sum of kinetic and potential energy terms, incorporating corrections for relativistic effects and interactions between the top and the star. Key deviations, ##\delta^{(1)}L## and ##\delta^{(2)}L##, are derived to account for the gravitational influence of the star's mass and its rotation, with specific equations provided for calculating these terms. The participants express confusion regarding the derivation of ##\delta^{(2)}L## and its relationship to the angular momentum of the star.

PREREQUISITES
  • Understanding of Lagrangian mechanics and its application to systems of particles.
  • Familiarity with relativistic corrections in classical mechanics.
  • Knowledge of angular momentum and its role in rotational dynamics.
  • Basic proficiency in calculus, particularly integrals and vector calculus.
NEXT STEPS
  • Study Lagrangian mechanics in detail, focusing on systems with multiple interacting bodies.
  • Explore the implications of relativistic effects in classical mechanics, particularly in orbital dynamics.
  • Investigate angular momentum conservation in rotating systems and its mathematical formulations.
  • Examine the derivation of perturbative corrections in Lagrangian formulations, specifically in gravitational contexts.
USEFUL FOR

Physicists, graduate students in theoretical mechanics, and researchers interested in celestial mechanics and relativistic dynamics will benefit from this discussion.

etotheipi
Looking at L&L's solution to problem four of section §106. Lagrangian for a system of particles:\begin{align*}
L = &\sum_a \frac{m_a' v_a^2}{2} \left( 1 + 3\sum_{b}' \frac{km_b}{c^2 r_{ab}} \right) + \sum_a \frac{m_a v_a^4}{8c^2} + \sum_a \sum_b' \frac{km_a m_b}{2r_{ab}} \\

&- \sum_a \sum_b' \frac{km_a m_b}{4c^2 r_{ab}} \left[ 7 \mathbf{v}_a \cdot \mathbf{v}_b +(\mathbf{v}_a \cdot \mathbf{n}_{ab})(\mathbf{v}_b \cdot \mathbf{n}_{ab}) \right] - \sum_a \sum_b' \sum_c' \frac{k^2 m_a m_b m_c}{2c^2 r_{ab} r_{ac}}\end{align*}I think in the first approximation L&L are writing ##L = L_0 + \delta^{(1)}L + \delta^{(2)} L## with ##L_0 = \sum_a \frac{m_a v_a^2}{2}## and the first deviation ##\delta^{(1)}L## is arising from the term ##\sum_a \frac{m_a' v_a^2}{2} \sum_{b}' \frac{3km_b}{c^2 r_{ab}}##, where I guess they were considering something like\begin{align*}

\sum_{a \in \mathrm{top}} \sum_{b \in \mathrm{star}} \frac{3km_a m_b(\mathbf{V} + \boldsymbol{\omega} \times \mathbf{r})^2}{2c^2 r_{ab} } &\overset{\mathrm{continuum}}{\longrightarrow} \frac{3km'}{2c^2} \int_{\mathrm{top}} \frac{2}{R(\mathbf{r}')}(\mathbf{V} \cdot \boldsymbol{\omega} \times \mathbf{r}) dm\end{align*}having dropped the ##V^2## and neglecting anything in ##\omega^2##, also ##m'## is the mass of the star. It simplifies writing ##\int_{\mathrm{top}} x_i x_j dm = \frac{1}{2} I \delta_{ij}##. I don't know which term they used to write ##\delta^{(2)} L##; this second deviation is supposed to account for the rotation of the star; they say you can make use of the equation$$h_{03} = \frac{2kM'}{Rc^2} \sin^2{\theta}$$How do you use this? You're supposed to get$$\delta^{(2)} L = \frac{2k}{c^2} \int_{\mathrm{top}} \frac{\mathbf{M}' \cdot (\boldsymbol{\omega} \times \mathbf{r}) \times \mathbf{R}}{R^3} dm$$here ##\mathbf{M}'## is the angular momentum of the star. How do you arrive at this given the formula for ##h_{03}##? Very lost.
 
Last edited by a moderator:
Physics news on Phys.org
I wonder if it could be$$\delta^{(2)} L = -c \int h_{03} v(\mathbf{r}')^3 dm = - \frac{2k}{c} \int_{\mathrm{top}} \frac{M' v(\mathbf{r})^3 \sin^2{\theta}}{R} dm = \int_{\mathrm{top}} \frac{M' (\boldsymbol{\omega} \times \mathbf{r})^3 \sin^2{\theta}}{R} dm$$but given ##\mathbf{M}' \cdot (\boldsymbol{\omega} \times \mathbf{r}) \times \mathbf{R} = - \mathbf{M}' \cdot \mathbf{R} \times (\boldsymbol{\omega} \times \mathbf{r}) =-(\boldsymbol{\omega} \cdot \mathbf{M}')(\mathbf{R} \cdot \mathbf{r}) + (\boldsymbol{\omega} \cdot \mathbf{R})( \mathbf{r} \cdot \mathbf{M}')## it's not so clear how to show the two integrals are the same? Maybe there's some approximations being made?
 
Last edited by a moderator:

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K
Replies
6
Views
1K