I Precession of a spherical top in orbit around a rotating star

etotheipi
Looking at L&L's solution to problem four of section §106. Lagrangian for a system of particles:\begin{align*}
L = &\sum_a \frac{m_a' v_a^2}{2} \left( 1 + 3\sum_{b}' \frac{km_b}{c^2 r_{ab}} \right) + \sum_a \frac{m_a v_a^4}{8c^2} + \sum_a \sum_b' \frac{km_a m_b}{2r_{ab}} \\

&- \sum_a \sum_b' \frac{km_a m_b}{4c^2 r_{ab}} \left[ 7 \mathbf{v}_a \cdot \mathbf{v}_b +(\mathbf{v}_a \cdot \mathbf{n}_{ab})(\mathbf{v}_b \cdot \mathbf{n}_{ab}) \right] - \sum_a \sum_b' \sum_c' \frac{k^2 m_a m_b m_c}{2c^2 r_{ab} r_{ac}}\end{align*}I think in the first approximation L&L are writing ##L = L_0 + \delta^{(1)}L + \delta^{(2)} L## with ##L_0 = \sum_a \frac{m_a v_a^2}{2}## and the first deviation ##\delta^{(1)}L## is arising from the term ##\sum_a \frac{m_a' v_a^2}{2} \sum_{b}' \frac{3km_b}{c^2 r_{ab}}##, where I guess they were considering something like\begin{align*}

\sum_{a \in \mathrm{top}} \sum_{b \in \mathrm{star}} \frac{3km_a m_b(\mathbf{V} + \boldsymbol{\omega} \times \mathbf{r})^2}{2c^2 r_{ab} } &\overset{\mathrm{continuum}}{\longrightarrow} \frac{3km'}{2c^2} \int_{\mathrm{top}} \frac{2}{R(\mathbf{r}')}(\mathbf{V} \cdot \boldsymbol{\omega} \times \mathbf{r}) dm\end{align*}having dropped the ##V^2## and neglecting anything in ##\omega^2##, also ##m'## is the mass of the star. It simplifies writing ##\int_{\mathrm{top}} x_i x_j dm = \frac{1}{2} I \delta_{ij}##. I don't know which term they used to write ##\delta^{(2)} L##; this second deviation is supposed to account for the rotation of the star; they say you can make use of the equation$$h_{03} = \frac{2kM'}{Rc^2} \sin^2{\theta}$$How do you use this? You're supposed to get$$\delta^{(2)} L = \frac{2k}{c^2} \int_{\mathrm{top}} \frac{\mathbf{M}' \cdot (\boldsymbol{\omega} \times \mathbf{r}) \times \mathbf{R}}{R^3} dm$$here ##\mathbf{M}'## is the angular momentum of the star. How do you arrive at this given the formula for ##h_{03}##? Very lost.
 
Last edited by a moderator:
Physics news on Phys.org
I wonder if it could be$$\delta^{(2)} L = -c \int h_{03} v(\mathbf{r}')^3 dm = - \frac{2k}{c} \int_{\mathrm{top}} \frac{M' v(\mathbf{r})^3 \sin^2{\theta}}{R} dm = \int_{\mathrm{top}} \frac{M' (\boldsymbol{\omega} \times \mathbf{r})^3 \sin^2{\theta}}{R} dm$$but given ##\mathbf{M}' \cdot (\boldsymbol{\omega} \times \mathbf{r}) \times \mathbf{R} = - \mathbf{M}' \cdot \mathbf{R} \times (\boldsymbol{\omega} \times \mathbf{r}) =-(\boldsymbol{\omega} \cdot \mathbf{M}')(\mathbf{R} \cdot \mathbf{r}) + (\boldsymbol{\omega} \cdot \mathbf{R})( \mathbf{r} \cdot \mathbf{M}')## it's not so clear how to show the two integrals are the same? Maybe there's some approximations being made?
 
Last edited by a moderator:
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
Back
Top