I Precession of a spherical top in orbit around a rotating star

etotheipi
Looking at L&L's solution to problem four of section §106. Lagrangian for a system of particles:\begin{align*}
L = &\sum_a \frac{m_a' v_a^2}{2} \left( 1 + 3\sum_{b}' \frac{km_b}{c^2 r_{ab}} \right) + \sum_a \frac{m_a v_a^4}{8c^2} + \sum_a \sum_b' \frac{km_a m_b}{2r_{ab}} \\

&- \sum_a \sum_b' \frac{km_a m_b}{4c^2 r_{ab}} \left[ 7 \mathbf{v}_a \cdot \mathbf{v}_b +(\mathbf{v}_a \cdot \mathbf{n}_{ab})(\mathbf{v}_b \cdot \mathbf{n}_{ab}) \right] - \sum_a \sum_b' \sum_c' \frac{k^2 m_a m_b m_c}{2c^2 r_{ab} r_{ac}}\end{align*}I think in the first approximation L&L are writing ##L = L_0 + \delta^{(1)}L + \delta^{(2)} L## with ##L_0 = \sum_a \frac{m_a v_a^2}{2}## and the first deviation ##\delta^{(1)}L## is arising from the term ##\sum_a \frac{m_a' v_a^2}{2} \sum_{b}' \frac{3km_b}{c^2 r_{ab}}##, where I guess they were considering something like\begin{align*}

\sum_{a \in \mathrm{top}} \sum_{b \in \mathrm{star}} \frac{3km_a m_b(\mathbf{V} + \boldsymbol{\omega} \times \mathbf{r})^2}{2c^2 r_{ab} } &\overset{\mathrm{continuum}}{\longrightarrow} \frac{3km'}{2c^2} \int_{\mathrm{top}} \frac{2}{R(\mathbf{r}')}(\mathbf{V} \cdot \boldsymbol{\omega} \times \mathbf{r}) dm\end{align*}having dropped the ##V^2## and neglecting anything in ##\omega^2##, also ##m'## is the mass of the star. It simplifies writing ##\int_{\mathrm{top}} x_i x_j dm = \frac{1}{2} I \delta_{ij}##. I don't know which term they used to write ##\delta^{(2)} L##; this second deviation is supposed to account for the rotation of the star; they say you can make use of the equation$$h_{03} = \frac{2kM'}{Rc^2} \sin^2{\theta}$$How do you use this? You're supposed to get$$\delta^{(2)} L = \frac{2k}{c^2} \int_{\mathrm{top}} \frac{\mathbf{M}' \cdot (\boldsymbol{\omega} \times \mathbf{r}) \times \mathbf{R}}{R^3} dm$$here ##\mathbf{M}'## is the angular momentum of the star. How do you arrive at this given the formula for ##h_{03}##? Very lost.
 
Last edited by a moderator:
Physics news on Phys.org
I wonder if it could be$$\delta^{(2)} L = -c \int h_{03} v(\mathbf{r}')^3 dm = - \frac{2k}{c} \int_{\mathrm{top}} \frac{M' v(\mathbf{r})^3 \sin^2{\theta}}{R} dm = \int_{\mathrm{top}} \frac{M' (\boldsymbol{\omega} \times \mathbf{r})^3 \sin^2{\theta}}{R} dm$$but given ##\mathbf{M}' \cdot (\boldsymbol{\omega} \times \mathbf{r}) \times \mathbf{R} = - \mathbf{M}' \cdot \mathbf{R} \times (\boldsymbol{\omega} \times \mathbf{r}) =-(\boldsymbol{\omega} \cdot \mathbf{M}')(\mathbf{R} \cdot \mathbf{r}) + (\boldsymbol{\omega} \cdot \mathbf{R})( \mathbf{r} \cdot \mathbf{M}')## it's not so clear how to show the two integrals are the same? Maybe there's some approximations being made?
 
Last edited by a moderator:
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top