Preserving Covariant Derivatives of Null Vectors Under Variation

Click For Summary

Discussion Overview

The discussion revolves around the preservation of covariant derivatives of null vectors under variation, specifically in the context of general relativity and differential geometry. Participants explore the conditions necessary for the variation of null vectors to maintain the properties of their covariant derivatives, referencing specific equations from Carlip's paper.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Exploratory

Main Points Raised

  • One participant presents a set of equations involving two null vectors and seeks hints on how to derive conditions for preserving covariant derivatives during their variation.
  • Another participant suggests that using coordinate time instead of the parameter of the geodesic equation might be beneficial for the problem at hand.
  • A later reply provides a detailed mathematical approach, including variations of the covariant derivatives and the application of the Leibniz rule, to derive relevant equations that could lead to the desired results in Carlip's paper.
  • One participant expresses gratitude and confirms the successful derivation of one of the relations discussed.

Areas of Agreement / Disagreement

Participants do not appear to reach a consensus on the exact conditions for preserving covariant derivatives, as the discussion includes various approaches and suggestions without definitive conclusions.

Contextual Notes

The discussion includes complex mathematical expressions and relies on specific definitions and assumptions related to null vectors and covariant derivatives, which may not be fully articulated or resolved within the thread.

sarriiss
Messages
2
Reaction score
1
Having two null vectors with $$n^{a} l_{a}=-1, \\ g_{ab}=-(l_{a}n_{b}+n_{a}l_{b}),\\ n^{a}\nabla_{a}n^{b}=0$$ gives $$\nabla_{a}n_{b}=\kappa n_{a}n_{b},\\ \nabla_{a}n^{a}=0,\\ \nabla_{a}l_{b}=-\kappa n_{a}l_{b},\\ \nabla_{a}l^{a}=\kappa$$.
How to show that under the variation of the null vectors, above covariant derivatives are preserved? In other words how to get the conditions on variation of null vectors which preserve the above covariant derivatives. To be specific, I need some hints to get equation (2.5) in Carlip's paper https://arxiv.org/abs/1702.04439. I started with $$l^{a}\rightarrow l^{a}+\delta l^{a},\\ n^{a}\rightarrow n^{a}+\delta n^{a}$$ but couldn't get equation (2.5) in Carlip's paper.
 
Physics news on Phys.org
Light geodesic is null, ds=0. Sometimes coordinate time t is used not s as parameter of geodesic equation. Is this prescription helpful in you case?
 
  • Like
Likes   Reactions: sarriiss
Not sure if you solved your problem by now, but it's just a matter of combining terms in a Leibniz rule. Let's vary both the equations for covariant derivatives:
$$\nabla_a(\delta l_b) = -\delta \kappa n_a l_b - \kappa \delta n_a l_b - \kappa n_a\delta l_b$$
$$\nabla_a(\delta n_b) = \delta \kappa n_a n_b + \kappa(\delta n_a n_b + n_a \delta n_b)$$

Contract the second equation by ##l^b##:
$$\nabla_a(\delta n_b)l^b = -\delta\kappa n_a + \kappa(-\delta n_a + n_a l^b\delta n_b)$$
Apply Leibniz rule for covariant derivative:
$$\nabla_a(l^b\delta n_b) = \nabla_a(\delta n_b)l^b + \nabla_a(l^b)\delta n_b = -\delta \kappa n_a - \kappa\delta n_a$$
Now contract with ##n^a##, you find:
$$\bar{D}(l^b\delta n_b) = -\kappa n^a\delta n_a$$

Secondly, you contract the 2nd variation from the beginning, this time with ##n^b##:
$$\nabla_a(\delta n_b)n^b = \kappa n_a n^b\delta n_b$$
Apply the Leibniz rule as before:
$$\nabla_a(n^b \delta n_b) = 2\kappa n_a n^b \delta n_b$$
And finally contract by ##l^a##, you find:
$$D(n^b \delta n_b) = -2\kappa n^b\delta n_b$$

Finally you combine these two results to see that:
$$\bar{D}(l^b\delta n_b) = (D+\kappa)(n^b \delta n_b)$$

This is the first formula you find below. Similarly you will contract the first variation equation, and I'd assume you will find the second relation in (2.5) of that paper. Hope that helps.
 
  • Like
Likes   Reactions: sarriiss
Thank you so much! I derived the second relation.
 
  • Like
Likes   Reactions: Antarres

Similar threads

  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 20 ·
Replies
20
Views
5K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 33 ·
2
Replies
33
Views
6K