A Preserving Covariant Derivatives of Null Vectors Under Variation

sarriiss
Messages
2
Reaction score
1
Having two null vectors with $$n^{a} l_{a}=-1, \\ g_{ab}=-(l_{a}n_{b}+n_{a}l_{b}),\\ n^{a}\nabla_{a}n^{b}=0$$ gives $$\nabla_{a}n_{b}=\kappa n_{a}n_{b},\\ \nabla_{a}n^{a}=0,\\ \nabla_{a}l_{b}=-\kappa n_{a}l_{b},\\ \nabla_{a}l^{a}=\kappa$$.
How to show that under the variation of the null vectors, above covariant derivatives are preserved? In other words how to get the conditions on variation of null vectors which preserve the above covariant derivatives. To be specific, I need some hints to get equation (2.5) in Carlip's paper https://arxiv.org/abs/1702.04439. I started with $$l^{a}\rightarrow l^{a}+\delta l^{a},\\ n^{a}\rightarrow n^{a}+\delta n^{a}$$ but couldn't get equation (2.5) in Carlip's paper.
 
Physics news on Phys.org
Light geodesic is null, ds=0. Sometimes coordinate time t is used not s as parameter of geodesic equation. Is this prescription helpful in you case?
 
Not sure if you solved your problem by now, but it's just a matter of combining terms in a Leibniz rule. Let's vary both the equations for covariant derivatives:
$$\nabla_a(\delta l_b) = -\delta \kappa n_a l_b - \kappa \delta n_a l_b - \kappa n_a\delta l_b$$
$$\nabla_a(\delta n_b) = \delta \kappa n_a n_b + \kappa(\delta n_a n_b + n_a \delta n_b)$$

Contract the second equation by ##l^b##:
$$\nabla_a(\delta n_b)l^b = -\delta\kappa n_a + \kappa(-\delta n_a + n_a l^b\delta n_b)$$
Apply Leibniz rule for covariant derivative:
$$\nabla_a(l^b\delta n_b) = \nabla_a(\delta n_b)l^b + \nabla_a(l^b)\delta n_b = -\delta \kappa n_a - \kappa\delta n_a$$
Now contract with ##n^a##, you find:
$$\bar{D}(l^b\delta n_b) = -\kappa n^a\delta n_a$$

Secondly, you contract the 2nd variation from the beggining, this time with ##n^b##:
$$\nabla_a(\delta n_b)n^b = \kappa n_a n^b\delta n_b$$
Apply the Leibniz rule as before:
$$\nabla_a(n^b \delta n_b) = 2\kappa n_a n^b \delta n_b$$
And finally contract by ##l^a##, you find:
$$D(n^b \delta n_b) = -2\kappa n^b\delta n_b$$

Finally you combine these two results to see that:
$$\bar{D}(l^b\delta n_b) = (D+\kappa)(n^b \delta n_b)$$

This is the first formula you find below. Similarly you will contract the first variation equation, and I'd assume you will find the second relation in (2.5) of that paper. Hope that helps.
 
Thank you so much! I derived the second relation.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top