A Preserving Covariant Derivatives of Null Vectors Under Variation

Click For Summary
The discussion focuses on preserving covariant derivatives of null vectors during their variation, specifically in the context of equations from Carlip's paper. The participants explore the implications of varying the null vectors and derive equations for the covariant derivatives of these vectors. Key steps involve applying the Leibniz rule to the variations and contracting the resulting equations with the null vectors. The final results show a relationship between the variations of the null vectors and their covariant derivatives, leading to the desired equations in Carlip's work. This analysis provides a pathway to understanding the conditions necessary for preserving the covariant derivatives under variation.
sarriiss
Messages
2
Reaction score
1
Having two null vectors with $$n^{a} l_{a}=-1, \\ g_{ab}=-(l_{a}n_{b}+n_{a}l_{b}),\\ n^{a}\nabla_{a}n^{b}=0$$ gives $$\nabla_{a}n_{b}=\kappa n_{a}n_{b},\\ \nabla_{a}n^{a}=0,\\ \nabla_{a}l_{b}=-\kappa n_{a}l_{b},\\ \nabla_{a}l^{a}=\kappa$$.
How to show that under the variation of the null vectors, above covariant derivatives are preserved? In other words how to get the conditions on variation of null vectors which preserve the above covariant derivatives. To be specific, I need some hints to get equation (2.5) in Carlip's paper https://arxiv.org/abs/1702.04439. I started with $$l^{a}\rightarrow l^{a}+\delta l^{a},\\ n^{a}\rightarrow n^{a}+\delta n^{a}$$ but couldn't get equation (2.5) in Carlip's paper.
 
Physics news on Phys.org
Light geodesic is null, ds=0. Sometimes coordinate time t is used not s as parameter of geodesic equation. Is this prescription helpful in you case?
 
Not sure if you solved your problem by now, but it's just a matter of combining terms in a Leibniz rule. Let's vary both the equations for covariant derivatives:
$$\nabla_a(\delta l_b) = -\delta \kappa n_a l_b - \kappa \delta n_a l_b - \kappa n_a\delta l_b$$
$$\nabla_a(\delta n_b) = \delta \kappa n_a n_b + \kappa(\delta n_a n_b + n_a \delta n_b)$$

Contract the second equation by ##l^b##:
$$\nabla_a(\delta n_b)l^b = -\delta\kappa n_a + \kappa(-\delta n_a + n_a l^b\delta n_b)$$
Apply Leibniz rule for covariant derivative:
$$\nabla_a(l^b\delta n_b) = \nabla_a(\delta n_b)l^b + \nabla_a(l^b)\delta n_b = -\delta \kappa n_a - \kappa\delta n_a$$
Now contract with ##n^a##, you find:
$$\bar{D}(l^b\delta n_b) = -\kappa n^a\delta n_a$$

Secondly, you contract the 2nd variation from the beggining, this time with ##n^b##:
$$\nabla_a(\delta n_b)n^b = \kappa n_a n^b\delta n_b$$
Apply the Leibniz rule as before:
$$\nabla_a(n^b \delta n_b) = 2\kappa n_a n^b \delta n_b$$
And finally contract by ##l^a##, you find:
$$D(n^b \delta n_b) = -2\kappa n^b\delta n_b$$

Finally you combine these two results to see that:
$$\bar{D}(l^b\delta n_b) = (D+\kappa)(n^b \delta n_b)$$

This is the first formula you find below. Similarly you will contract the first variation equation, and I'd assume you will find the second relation in (2.5) of that paper. Hope that helps.
 
Thank you so much! I derived the second relation.
 
Hello, everyone, hope someone will resolve my doubts. I have posted here some two years ago asking for an explanation of the Lorentz transforms derivation found in the Einstein 1905 paper. The answer I got seemed quite satisfactory. Two years after I revisit this derivation and this is what I see. In the Einstein original paper, the Lorentz transforms derivation included as a premise that light is always propagated along the direction perpendicular to the line of motion when viewed from the...