MHB Prime numbers proof by contradiction

AI Thread Summary
The discussion centers on proving that for prime numbers \(a\), \(b\), and \(c\), the equation \(a^2 + b^2 \neq c^2\) holds true through contradiction. Participants explore the relationship between the squares of the primes, noting that \(a^2 = c^2 - b^2\) can be expressed as \((c - b)(c + b)\). The challenge arises in transitioning from this equation to a contradiction, with suggestions that \(c - b\) and \(c + b\) must relate to the properties of prime numbers. The conversation highlights the difficulty in deriving a clear path to complete the proof. Ultimately, the proof remains unresolved, emphasizing the complexity of the relationship between prime numbers and their squares.
tmt1
Messages
230
Reaction score
0
For prime numbers, $a$, $b$, $c$, $a^2 + b^2 \ne c^2$. Prove this by contradiction.

So, I get that $a^2 = c^2 - b^2 = (c - b)(c +b)$

And I get that prime numbers are the product of 2 numbers that are either greater than one, or less than the prime numbers.

But I'm unsure how to go from here.
 
Mathematics news on Phys.org
tmt said:
For prime numbers, $a$, $b$, $c$, $a^2 + b^2 \ne c^2$. Prove this by contradiction.

So, I get that $a^2 = c^2 - b^2 = (c - b)(c +b)$

And I get that prime numbers are the product of 2 numbers that are either greater than one, or less than the prime numbers.

But I'm unsure how to go from here.

a is prime so either $c-b = 1$ and $c+b= a^2$ or $c-b=c+b=a$ can you proceed from here
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top