Probability and probability amplitude.

dawningparadox
Messages
17
Reaction score
0
Quoted from reddit, an explanation for quantum superposition :

By analogy, you could say that the traveling electron is in a superposition of paths. Some are direct (close to what is called the "classical path" -- the path that a particle would take according to classical mechanics). Some are indirect, going to the moon and back before arriving at its destination.

But, when you measure the electron, you cause the superposition to collapse, just as before, and the electron is forced to take on a single path.

Now, the crazy thing is, all of the paths have the same probability. The probability is a positive number between 0 and 1 that says how probable it is that a certain path will be chosen. A probability of 0.5 means that the path has a 50% chance of being chosen. The crazy thing I'm saying here, though, is that all of the paths have the same probability, which sounds crazy.

Quantum mechanics has a weird quantity, though, called the probability amplitude. The amplitude is like the square root of the probability. Since it's a square root, it need not be positive, and it doesn't even have to be real. A probability amplitude can be any complex number, as long as the square of its modulus is between 0 and 1.

And it turns out that, even though all of the paths have an equal probability, they do not all have the same probability amplitude. Specifically, they differ by a phase. When you add up the probability amplitudes for each path, you find two things:

a) The paths that are close to the "classical" path tend to re-enforce one another. b) The paths that stray far from the classical path tend to cancel each other out.

So in the end, the probability of finding the particle very far away from the classical path is very small. Small particles like electrons can stray a little bit, but it's not too far before the probability becomes too small. Heavier objects, like a grain of sand, can't stray by any measurable amount before the probability becomes near-zero, which is why those objects seem to behave in a classical way.

Someone pointed out that the one that stays the same within all possible paths should be the probability rather than the probability amplitude. By the relationship of (probability amplitude)² = (probability), if the probability amplitudes are equal within all possible paths, how does the probabilty cancellation mechanism (within similar paths) work? How can equal values cancel each other out and produce different values for their squares (probability)?
 
Physics news on Phys.org
dawningparadox said:
By the relationship of (probability amplitude)² = (probability), if the probability amplitudes are equal within all possible paths, how does the probabilty cancellation mechanism (within similar paths) work? How can equal values cancel each other out and produce different values for their squares (probability)?
All probability amplitudes are summed (as vectors) and only one final amplitude is then squared. Amplitudes cancel each other out when they have opposite phases.
I can recommend you Richard Feynman's book "QED: The strange theory of light and matter". It's accurate but it describes the the math in an alternative layman friendly way.
 
zonde said:
All probability amplitudes are summed (as vectors) and only one final amplitude is then squared. Amplitudes cancel each other out when they have opposite phases.
I can recommend you Richard Feynman's book "QED: The strange theory of light and matter". It's accurate but it describes the the math in an alternative layman friendly way.
Thanks.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...

Similar threads

Replies
5
Views
2K
Replies
2
Views
2K
Replies
6
Views
2K
Replies
8
Views
1K
Replies
1
Views
1K
Back
Top