Probability - Poisson Random Variable?

Click For Summary
The discussion focuses on a homework problem involving the Poisson random variable related to pothole repairs on a Pennsylvania interstate. The average rate of potholes is 1.6 per 10 miles, leading to an expected value of 4.8 potholes over a 30-mile stretch. The random variable X is confirmed to be Poisson, with both its expected value and variance equal to 4.8. The cost of repairing a pothole is $5000, resulting in an expected repair expense Y of $24,000 for the 30 miles. Variance for Y is calculated using the properties of variance for Poisson distributions, emphasizing the relationship between expected value and variance.
tjackson
Messages
4
Reaction score
0
1. Homework Statement

During a typical Pennsylvania winter, I80 averages 1.6 potholes per 10 miles. A certain county is responsible for repairing potholes in a 30 mile stretch of the interstate. Let X denote the number of potholes the county will have to repair at the end of next winter.
1. The random variable X is

(i) binomial (ii) hypergeometric (iii) negative binomial (iv) Poisson

2. Give the expected value and variance of X.

3. The cost of repairing a pothole is $ 5000. If Y denotes the county's pothole repair expense for next winter,find the mean value and variance of Y ?

2. Homework Equations and Attempt at a solution

1.) Pretty sure this is a Poisson random variable

2.) P =( \alphax * e -\alpha ) / x!

In this case α = 0.16 potholes/mile

x represents 0, 1, 2, ... , 30 is this correct?

Expected value of X= α = 0.16 potholes/mile
Variance of X = expected value of X = α = 0.16 potholes/mile

Y = aX + b

X = potholes that need to be fixed
a = 5000 (cost to fix each pothole)
b = 0


Expected value of Y = a * Expected value of X

Variance of Y = a2 * Variance of X
 
Physics news on Phys.org
tjackson said:
1. Homework Statement

During a typical Pennsylvania winter, I80 averages 1.6 potholes per 10 miles. A certain county is responsible for repairing potholes in a 30 mile stretch of the interstate. Let X denote the number of potholes the county will have to repair at the end of next winter.
1. The random variable X is

(i) binomial (ii) hypergeometric (iii) negative binomial (iv) Poisson

2. Give the expected value and variance of X.

3. The cost of repairing a pothole is $ 5000. If Y denotes the county's pothole repair expense for next winter,find the mean value and variance of Y ?

2. Homework Equations and Attempt at a solution

1.) Pretty sure this is a Poisson random variable

2.) P =( \alphax * e -\alpha ) / x!

In this case α = 0.16 potholes/mile

x represents 0, 1, 2, ... , 30 is this correct?
No. The random variable X denotes "the number of potholes the county will have to repair." Why would that number be limited to 30? ##\alpha## is the expected value of X, so it should be a number, not a number per mile.
 
You may be overcomplicating the problem a bit :)

Look at it this way: if, historically, the city averages about 1.6 potholes/ 10 miles, how many would you average in 30 miles?

Now to find the average expense of Y, there is a way we can look at it. Y = 5000*λ where lambda is the number of pot holes. So we can expect to pay say 5000*1.6 = $8000 for 10 miles of road. So how much would that be for 30 miles?

Now, let's talk about variance. Remember the definition of expected value and variance for Poisson? They are both λ .

So if you need to find Var(Y) = Var(5000*λ), what do we do with constant terms in variance? Hint: It's a large number, but that OK because variance isn't as helpful to know as standard deviation.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
1
Views
1K
Replies
9
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K