I Probability that X is less than a set

  • I
  • Thread starter Thread starter showzen
  • Start date Start date
  • Tags Tags
    Probability Set
AI Thread Summary
The discussion revolves around understanding the cumulative distribution function (cdf) transformation from a random variable X to Y=g(X) as presented in the textbook "Statistical Inference" by Casella and Berger. The key point of confusion is the notation used for expressing probabilities involving sets, particularly the interpretation of P(X ≤ g^{-1}(y)) and its relation to set notation. Participants clarify that g^{-1}(y) refers to a number while g^{-1}({y}) denotes a set, highlighting the non-standard nature of the notation in the textbook. It is emphasized that the user is not lacking intuition but rather grappling with unconventional notation. The conversation also touches on the need for supplementary resources to aid in understanding these concepts.
showzen
Messages
34
Reaction score
0
Hi everyone, I am currently working through the textbook Statistical Inference by Casella and Berger. My question has to do with transformations.

Let ##X## be a random variable with cdf ##F_X(x)##. We want to find the cdf of ##Y=g(X)##. So we define the inverse mapping, ##g^{-1}(\{y\})=\{x\in S_x | g(x)=y\}##. Now, ##F_Y(y)=P(Y\leq y)=P(g(X)\leq y)=P(X\leq g^{-1}(y))##.

My textbook then states ##P(X\leq g^{-1}(y))=P(\{x\in S_x | g(x)\leq y\}##.

The issue I have is with this last equality. Are we defining the meaning of ##X## less than or equal to a set here, or am I missing some intuition on sets?
 
Physics news on Phys.org
showzen said:
Are we defining the meaning of XX less than or equal to a set here, or am I missing some intuition on sets?
It looks like the former. You are not missing any intuition on sets. It is non-standard notation, which I have not encountered before. But if you have to use that book then you'll need to bear with their notation.
 
showzen said:
Hi everyone, I am currently working through the textbook Statistical Inference by Casella and Berger. My question has to do with transformations.

Let ##X## be a random variable with cdf ##F_X(x)##. We want to find the cdf of ##Y=g(X)##. So we define the inverse mapping, ##g^{-1}(\{y\})=\{x\in S_x | g(x)=y\}##. Now, ##F_Y(y)=P(Y\leq y)=P(g(X)\leq y)=P(X\leq g^{-1}(y))##.

My textbook then states ##P(X\leq g^{-1}(y))=P(\{x\in S_x | g(x)\leq y\}##.

The issue I have is with this last equality. Are we defining the meaning of ##X## less than or equal to a set here, or am I missing some intuition on sets?
The notation is a little confusing. ##g^{-1}(y)## is a number, ##g^{-1}(\{y\})## is a set.
 
If there is more than one ##x## for which ##g(x)=y## then ##g^{-1}(y)## is a set.
 
andrewkirk said:
It looks like the former. You are not missing any intuition on sets. It is non-standard notation, which I have not encountered before. But if you have to use that book then you'll need to bear with their notation.

Is there any supplementary resource that you would recommend?
 
I was reading documentation about the soundness and completeness of logic formal systems. Consider the following $$\vdash_S \phi$$ where ##S## is the proof-system making part the formal system and ##\phi## is a wff (well formed formula) of the formal language. Note the blank on left of the turnstile symbol ##\vdash_S##, as far as I can tell it actually represents the empty set. So what does it mean ? I guess it actually means ##\phi## is a theorem of the formal system, i.e. there is a...

Similar threads

Back
Top