Another1
- 39
- 0
using Rodrigues' formula show that $$\int_{-1}^{1} \,{P}_{n}(x){P}_{n}(x)dx = \frac{2}{2n+1}$$
$${P}_{n}(x) = \frac{1}{2^nn!}\frac{d^n}{dx^n}(x^2-1)^n$$
my thoughts
$$\int_{-1}^{1} \,{P}_{n}(x){P}_{n}(x)dx = \frac{1}{2^{2n}(n!)^2}\int_{-1}^{1} \,\frac{d^n}{dx^n}(x^2-1)^n\frac{d^n}{dx^n}(x^2-1)^ndx$$
let
$$u = \frac{d^n}{dx^n}(x^2-1)^n$$ and $$du =\frac{d^{n+1}}{dx^{n+1}}(x^2-1)^ndx$$
$$dv = \frac{d^n}{dx^n}(x^2-1)^ndx$$ and $$v = \frac{d^{n-1}}{dx^{n-1}}(x^2-1)^n$$
so
$$uv=\frac{d^n}{dx^n}(x^2-1)^n\frac{d^{n-1}}{dx^{n-1}}(x^2-1)^n$$
$$-vdu=-\int_{-1}^{1} \,\frac{d^{n+1}}{dx^{n+1}}(x^2-1)^n\frac{d^{n-1}}{dx^{n-1}}(x^2-1)^ndx$$
$$uv-vdu = \frac{d^n}{dx^n}(x^2-1)^n\frac{d^{n-1}}{dx^{n-1}}(x^2-1)^n-\int_{-1}^{1} \,\frac{d^{n+1}}{dx^{n+1}}(x^2-1)^n\frac{d^{n-1}}{dx^{n-1}}(x^2-1)^ndx$$
what should I do?
$${P}_{n}(x) = \frac{1}{2^nn!}\frac{d^n}{dx^n}(x^2-1)^n$$
my thoughts
$$\int_{-1}^{1} \,{P}_{n}(x){P}_{n}(x)dx = \frac{1}{2^{2n}(n!)^2}\int_{-1}^{1} \,\frac{d^n}{dx^n}(x^2-1)^n\frac{d^n}{dx^n}(x^2-1)^ndx$$
let
$$u = \frac{d^n}{dx^n}(x^2-1)^n$$ and $$du =\frac{d^{n+1}}{dx^{n+1}}(x^2-1)^ndx$$
$$dv = \frac{d^n}{dx^n}(x^2-1)^ndx$$ and $$v = \frac{d^{n-1}}{dx^{n-1}}(x^2-1)^n$$
so
$$uv=\frac{d^n}{dx^n}(x^2-1)^n\frac{d^{n-1}}{dx^{n-1}}(x^2-1)^n$$
$$-vdu=-\int_{-1}^{1} \,\frac{d^{n+1}}{dx^{n+1}}(x^2-1)^n\frac{d^{n-1}}{dx^{n-1}}(x^2-1)^ndx$$
$$uv-vdu = \frac{d^n}{dx^n}(x^2-1)^n\frac{d^{n-1}}{dx^{n-1}}(x^2-1)^n-\int_{-1}^{1} \,\frac{d^{n+1}}{dx^{n+1}}(x^2-1)^n\frac{d^{n-1}}{dx^{n-1}}(x^2-1)^ndx$$
what should I do?