Problem in finding a general solution

Click For Summary
The discussion revolves around solving the equation tan²(α) + 2√3 tan(α) = 1 and finding its general solution. Participants suggest using the double-angle formula and rearranging the equation to derive solutions for 2α. The key insight involves combining terms and substituting values for n to identify patterns in the solutions. The final solution indicates that α can be expressed as π/12 + kπ/2, where k is an integer. The conversation emphasizes the importance of applying trigonometric identities to simplify the problem.
navneet9431
Gold Member
Messages
107
Reaction score
9

Homework Statement


thumbnail_IMG_20180713_225234 (1).jpg


Homework Equations


General Formula for Tan(a)=Tan(b)
gif.gif


The Attempt at a Solution


See the question I have uploaded.

I have tried solving it this way,

Firstly I applied the Quadratic Formula to get,

gif.gif


Now we have two cases,

CASE-1

When
12%29%3D2-%5Csqrt3.gif


So General Formula here will be,

12.gif


Now, CASE-2

when
12%29%3D-%282+%5Csqrt3%29.gif


So General Formula here will be
12.gif


I do not know what should I do next to get the answer? Please tell me how to proceed Further.

The answer given in the key is the option (C).

I will be thankful for any help!
 

Attachments

  • thumbnail_IMG_20180713_225234 (1).jpg
    thumbnail_IMG_20180713_225234 (1).jpg
    20.2 KB · Views: 890
  • gif.gif
    gif.gif
    323 bytes · Views: 855
  • gif.gif
    gif.gif
    1.1 KB · Views: 552
  • 12%29%3D2-%5Csqrt3.gif
    12%29%3D2-%5Csqrt3.gif
    886 bytes · Views: 527
  • 12.gif
    12.gif
    446 bytes · Views: 509
  • 12%29%3D-%282+%5Csqrt3%29.gif
    12%29%3D-%282+%5Csqrt3%29.gif
    1 KB · Views: 543
  • 12.gif
    12.gif
    468 bytes · Views: 532
Physics news on Phys.org
Hello,

So you need to combine ##\pi (n+ {1\over 12}) ## and ##\pi (n - {5\over 12}) ## . Leave the ##\pi## outside the brackets and try a few n. The pattern emerges !
 
  • Like
Likes scottdave
if the 6n looks scary in the option C, it is actually just ##n/2## cause ##a=(6n+1)\frac{\pi}{12}=\frac{n}{2}\pi+\frac{\pi}{12}##. From this very last expression for a, what do you get if you put
1) n=even=2k
2) n=odd=2k+1
 
  • Like
Likes ehild and scottdave
I think the problem is solved by @Delta2's hint, so I may come with a very simple solution of the equation tan2(α)+2√3 tan(α)=1,which can be rearranged to 1-tan2(α)=2√3 tan(α).
nπ/2 in the offered solutions suggests to solve the equation for 2α. The double-angle formula is ##\tan(2α)=\frac{2\tan(α)}{1-\tan^2(α)}##, that is ##\tan(2α)=\frac{2\tan(α)}{2\sqrt3 \tan(α)}=\frac{1}{\sqrt 3}##, that is, 2α=π/6+kπ and α=π/12+kπ/2.
 
  • Like
Likes Delta2

Similar threads

Replies
3
Views
2K
Replies
12
Views
3K
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
6
Views
1K