Problem n. 7 chapter 4 Eisberg Resnick "Quantum Physics"

  • Thread starter Thread starter baffetto59
  • Start date Start date
  • Tags Tags
    problem
AI Thread Summary
The discussion revolves around Problem 7 from Chapter 4 of Eisberg and Resnick's "Quantum Physics," specifically regarding the calculation of the number of alpha particles scattered at an angle greater than Theta in Rutherford scattering. Participants highlight discrepancies between their solutions and the book's formula, noting that the original formula used by one participant contains an incorrect factor of 4π. They emphasize the importance of correctly integrating the Rutherford formula and adjusting for the proper constants to arrive at the correct expression. Ultimately, the conversation underscores the necessity of careful attention to detail in mathematical derivations in quantum physics.
baffetto59
Messages
4
Reaction score
4
Homework Statement
the solution is not the same stated by the authors. Asking help about
Relevant Equations
integral
a
 

Attachments

Physics news on Phys.org
baffetto59 said:
Homework Statement: the solution is not the same stated by the authors. Asking help about
Relevant Equations: integral
Please state the problem exactly as written and post it here in LaTeX (see the guide below) so readers don't have to open an attachment. To receive help, you also need to display your attempted solution.
 
  • Like
Likes Albertus Magnus and hutchphd
\documentclass{article}

\title {Problem n. 7 chapter 4 Eisberg Resnick "Quantum Physics"}
\usepackage{graphicx}
\graphicspath{ {./images/} }
\begin{document}
\maketitle
\begin{description}
\item Show that the number of $\alpha$ particles scattered by an angle $\Theta$ or greater in Rutherford scattering is
\item $(\frac{1}{4\pi\epsilon_0})^2\pi I\rho t(\frac{zZe^2}{Mv^2})^2\cot^2(\Theta/2)$\space(1)
\item SOLUTION
\item starting from Rutherford formula dN=$(\frac{1}{4\pi\epsilon_0})^2\pi I\rho t(\frac{zZe^2}{Mv^2})^2\frac{1}{\sin^4(\Theta/2)}d\Omega$ \space(1)
\item $d\Omega=2\pi\sin(\Theta)d\Theta$
\item integrate (1) from $\Theta$ to $\pi$
\item N=$(\frac{1}{4\pi\epsilon_0})^2\pi I\rho t(\frac{zZe^2}{Mv^2})^2 \int_\Theta^\pi\frac{2\pi\sin(\Theta)d\Theta}{\sin^4(\Theta/2)}$
\item let u=$\Theta/2$\space;\space$d\Theta=2du$\space;\space$\sin(\Theta)=2\sin(\Theta/2)\cos(\Theta/2)$
\item =$(\frac{1}{4\pi\epsilon_0})^2\space 8\pi^2I\rho t(\frac{zZe^2}{Mv^2})^2 \int\frac{\sin(u)\cos(u)}{\sin^4(u)}du$
\item =$(\frac{1}{4\pi\epsilon_0})^2\space 8\pi^2I\rho t(\frac{zZe^2}{Mv^2})^2 \int\frac{\cos(u)}{\sin^3(u)}du$
\item =$(\frac{1}{4\pi\epsilon_0})^2\space 8\pi^2I\rho t(\frac{zZe^2}{Mv^2})^2 \int\frac{d\sin(u)}{\sin^3(u)}$
\item =$(\frac{1}{4\pi\epsilon_0})^2\space 8\pi^2I\rho t(\frac{zZe^2}{Mv^2})^2 (-\frac{1}{2})\frac{1}{\sin^2(\Theta/2)}\mid^\pi_\Theta$
\item =$(\frac{1}{4\pi\epsilon_0})^2\space 8\pi^2I\rho t(\frac{zZe^2}{Mv^2})^2 (-\frac{1}{2})(1-\frac{1}{\sin^2(\Theta/2)})$
\item =$(\frac{1}{4\pi\epsilon_0})^2\space 8\pi^2I\rho t(\frac{zZe^2}{Mv^2})^2 (\frac{1}{2})(\frac{1-sin^2(\Theta/2}{\sin^2(\Theta/2)})$
\item =$\frac{1}{4\epsilon_0^2}\space I \rho t(\frac{zZe^2}{Mv^2})^2\cot^2(\Theta/2)$

\end{description}
\includegraphics{scattering}
\end{document}
 
Yeah, well, that's not what @renormalize meant :smile:

But when I compare your
starting from Rutherford formula $$dN=\left (\frac{1}{4\pi\epsilon_0}\right )^2\;\pi I\rho t \left (\frac{zZe^2}{Mv^2}\right )^2\;\frac{1}{\sin^4(\Theta/2)}d\Omega$$
with the book:$$
N(\Theta)\, d\Theta =\left(\frac{1}{4\pi\epsilon_0}\right )^2\;\left(\frac{zZe^2}{2Mv^2}\right )^2\;\frac{ I\rho t\; 2\pi \sin\Theta\ d\Theta}{\sin^4(\Theta/2)} \tag {4-7}$$
I see you have a factor ##4\pi ## too many.

##\ ##
 
Last edited:
Re ##\LaTeX##: the button 'LaTex Guide' at the lower left gets you started. In PF you can insert formulas (in-line math and displayed math), but not complete documents.

##\ ##
 
  • Like
Likes SanderStols

Problem n. 7 chapter 4 Eisberg Resnick "Quantum Physics"}​

Show that the number of ##\alpha## particles scattered by an angle ##\Theta## or greater in Rutherford scattering is
$$\left (\frac{1}{4\pi\epsilon_0}\right)^{\!2}\pi I\rho t \left (\frac{zZe^2}{Mv^2}\right)^{\!2}\cot^2(\Theta/2)
$$

SOLUTION​

starting from Rutherford formula $$dN=\left (\frac{1}{4\pi\epsilon_0}\right )^{\!2}\left(\frac{zZe^2}{2Mv^2}\right )^{\!2} I\rho t \;\frac{d\Omega}{\sin^4(\theta/2} \tag{4-7}
$$ with ##d\Omega=2\pi\sin(\Theta)d\Theta\ . \ \ ##Integrate ##(4{\text -}7)## from ##\Theta## to ##\pi##: $$

N=\left (\frac{1}{4\pi\epsilon_0}\right )^{\!2}\;\left (\frac{zZe^2}{Mv^2}\right )^{\!2}\;\frac{ \pi I\rho t}{2}\; \int_\Theta^\pi\frac{sin(\theta)d\theta}{\sin^4(\theta/2)}
$$ let ##u=\theta/2\space;\space d\theta=2du\space;\space\sin(\Theta)=2\sin(\Theta/2)\cos(\Theta/2)\ \ \Rightarrow ## $$
\begin{align*}
\int_\Theta^\pi\frac{sin(\theta)d\theta}{\sin^4(\theta/2)}&=
4\int_{\Theta/2}^{\pi/2}\frac{\sin u\cos u \, du}{\sin^4 u}\\ \ \\ &=\
\left . \frac{-2}{\sin^2(u)}\ \right |_{\Theta/2}^{\pi/2} \ = -2 \left (1-\frac {1}{\sin^2(\Theta/2)}\right )
= 2\cot^2(\Theta/2)
\end{align*}
$$so that $$N = \left (\frac{1}{4\pi\epsilon_0}\right )^{\!2}\;\left (\frac{zZe^2}{Mv^2}\right )^{\!2}\; \pi I\rho t\; \cot^2(\Theta/2)\ .$$as desired,

:wink: just practicing my ##\TeX## -- the answer was given away in #4 already

##\ ##
 
BvU said:
Yeah, well, that's not what @renormalize meant :smile:

But when I compare your

with the book:$$
N(\Theta)\, d\Theta =\left(\frac{1}{4\pi\epsilon_0}\right )^2\;\left(\frac{zZe^2}{2Mv^2}\right )^2\;\frac{ I\rho t\; 2\pi \sin\Theta\ d\Theta}{\sin^4(\Theta/2)} \tag {4-7}$$
I see you have a factor ##4\pi ## too many.

##\ ##
$d\Omega=2\pi\sin(\Theta)d\Theta$
It's coherent
 
Please use double-$$ signs for a display equation or double-## signs for an in-line equation, like $$d\Omega=2\pi\sin(\Theta)d\Theta$$:$$d\Omega=2\pi\sin(\Theta)d\Theta$$
 
baffetto59 said:
$d\Omega=2\pi\sin(\Theta)d\Theta$
It's coherent
No. It's wrong.

again: your
starting from Rutherford formula $$dN=(\frac{1}{4\pi\epsilon_0})^2\pi I\rho t(\frac{zZe^2}{Mv^2})^2\frac{1}{\sin^4(\Theta/2)}d\Omega$$
has a ##\pi## too many in the numerator and misses a ##2^2## in the denominator when compared to ##(4{\text-}7)## in the book.

##\ ##
 
  • #10
Yes, thanks. I started from wrong formula.
 
Back
Top