dyn said:
So if i have x2 = 9 and i take the square root of both sides i get x = 3 which is obviously not the full solution, so taking the square root of both sides does not give the full solution ?
##x^2=9## becomes
$$
0=x^2-9=(x+3)\cdot (x-3) \quad \Longrightarrow \quad x=-3 \;\;\;\text{ OR } \;\;\;x=3
$$
Full solution. No need to bother the square root.
The square root is only a function for ##x\geq 0## and it is defined as ##\sqrt{.}\, : \,\mathbb{R}^+_0 \longrightarrow \mathbb{R}^+_0.## There is another, related, however,
different function ##-\sqrt{.}\, : \,\mathbb{R}^+_0 \longrightarrow \mathbb{R}^-_0.## You can talk about either function, but not about them as it was only one function. It is not. ##(x,\pm\sqrt{x})=\{(x,\sqrt{x})\,|\,x\geq 0\}\cup \{(x,-\sqrt{x})\,|\,x\geq 0\}## is a
relation, not a function.
Every function is a relation, but not every relation is a function. And since your notation ##\pm \sqrt{x^2}## refers to the relation with that ##\pm## you cannot pretend to apply a function on both sides of ##9=x^2.## What you can do is apply the function ##\sqrt{.}## and get ##\sqrt{9}=3=\sqrt{x^2}=x## like you would apply the function, e.g. times ##4## and get ##36=4x^2.## You can also apply the function ##-\sqrt{.}## on both sides and get ##-\sqrt{9}=-3=x.## But how do we know that we cannot find even more solutions if we only applied other functions, too? That's why ##0=9-x^2=(x-3)(x+3)## is the correct handling. This allows only the two solutions ##x=\pm 3.##