MHB Problems leading to quadratic equation

NotaMathPerson
Messages
82
Reaction score
0
a man spent 78 dollars for cigarettes. has the price per box been .50 cents less, he could have had one more box. How many boxes did he buy?

Heres what I tried

let $y=$ original price per box
$y-50=$ new price per box

Now,

$\frac{780}{y}=$ original number of boxes bought
$\frac{780}{y-50}=$ new number of boxes bought$\frac{780}{y-50}=\frac{780}{y}+1=$

$y^2-50y-39000=0$

Solving for y I get decimal number.

Can you tell me where my mistake is?

Thanks!

All variables are y. I edited it.
 
Last edited:
Mathematics news on Phys.org
I would let $B$ be the number of boxes he bought...and $P$ be the price (in dollars) per box, such that we may state:

$$BP=78$$

$$(B+1)\left(P-\frac{1}{2}\right)=78$$

I am assuming you meant "had the price per box been 50 cents less."

Solving the first equation for $P$ and substituting into the second, we obtain:

$$(B+1)\left(\frac{78}{B}-\frac{1}{2}\right)=78$$

Multiply through by $2B\ne0$:

$$(B+1)(156-B)=156B$$

Expand and write in standard form:

$$B^2+B-156=0$$

Factor:

$$(B+13)(B-12)=0$$

Discard the negative root, and we have:

$$B=12$$
 
Hello MarkFl!

Can you tell what I did wrong in my attempt above?
 
NotaMathPerson said:
Hello MarkFl!

Can you tell what I did wrong in my attempt above?

Well, you are being asked for the number of boxes, so you want to get an equation using a variable that represents the number of boxes. That's more direct than solving for the price...but you can answer the question this way.

In your equations you should be using 7800 instead of 780, since you are using cents instead of dollars. See if that fixes things...:D
 
MarkFL said:
Well, you are being asked for the number of boxes, so you want to get an equation using a variable that represents the number of boxes. That's more direct than solving for the price...but you can answer the question this way.

In your equations you should be using 7800 instead of 780, since you are using cents instead of dollars. See if that fixes things...:D

Oh yes! That careless mistake. Thank you very much!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
6
Views
2K
Replies
5
Views
2K
Replies
1
Views
3K
Replies
1
Views
2K
Replies
8
Views
3K
Replies
3
Views
3K
Back
Top