- #1
Time Suspect
- 5
- 0
Hi , I am working with the following stress-energy tensor:
T[itex]\mu\nu[/itex]=[itex]\partial[/itex][itex]\mu[/itex][itex]\phi[/itex][itex]\partial[/itex][itex]\nu[/itex][itex]\phi[/itex]* - g[itex]\mu\nu[/itex]([itex]\nabla[/itex][itex]\mu[/itex][itex]\phi[/itex][itex]\nabla[/itex][itex]\mu[/itex][itex]\phi[/itex]* - m2[itex]\phi\phi[/itex]*)
Where [itex]\phi[/itex] is a complex scalar of the form:
[itex]\phi[/itex](r,t) = [itex]\psi[/itex](r)eiwt
that obeys the Klein-gordon equation and [itex]\phi[/itex]* is the complex conjugate, and g the metric tensor.
My problem is that i think this tensor is not symmetric as Ttr /= Trt by a minus sign on the term of the partial derivates.
Thanks a lot for reading.
T[itex]\mu\nu[/itex]=[itex]\partial[/itex][itex]\mu[/itex][itex]\phi[/itex][itex]\partial[/itex][itex]\nu[/itex][itex]\phi[/itex]* - g[itex]\mu\nu[/itex]([itex]\nabla[/itex][itex]\mu[/itex][itex]\phi[/itex][itex]\nabla[/itex][itex]\mu[/itex][itex]\phi[/itex]* - m2[itex]\phi\phi[/itex]*)
Where [itex]\phi[/itex] is a complex scalar of the form:
[itex]\phi[/itex](r,t) = [itex]\psi[/itex](r)eiwt
that obeys the Klein-gordon equation and [itex]\phi[/itex]* is the complex conjugate, and g the metric tensor.
My problem is that i think this tensor is not symmetric as Ttr /= Trt by a minus sign on the term of the partial derivates.
Thanks a lot for reading.