- #1

Time Suspect

- 5

- 0

T

_{[itex]\mu\nu[/itex]=}[itex]\partial[/itex]

_{[itex]\mu[/itex]}[itex]\phi[/itex][itex]\partial[/itex]

_{[itex]\nu[/itex]}[itex]\phi[/itex]

^{*}- g

^{[itex]\mu\nu[/itex]}([itex]\nabla[/itex]

^{[itex]\mu[/itex]}[itex]\phi[/itex][itex]\nabla[/itex]

_{[itex]\mu[/itex]}[itex]\phi[/itex]

^{*}- m

^{2}[itex]\phi\phi[/itex]

^{*})

Where [itex]\phi[/itex] is a complex scalar of the form:

[itex]\phi[/itex](r,t) = [itex]\psi[/itex](r)e

^{iwt}

that obeys the Klein-gordon equation and [itex]\phi[/itex]

^{*}is the complex conjugate, and g the metric tensor.

My problem is that i think this tensor is not symmetric as T

_{tr}/= T

_{rt}by a minus sign on the term of the partial derivates.

Thanks a lot for reading.