Product of Tangent Vectors & Affine Parameter

binbagsss
Messages
1,291
Reaction score
12
If ##\sigma## is an affine paramter, then the only freedom of choice we have to specify another affine parameter is ##a\sigma+b##, a,b constants. [1]

For the tangent vector, ##\xi^{a}=dx^{a}/du##, along some curve parameterized by ##u##

My book says that ' if ##\xi^{a}\xi_{a}\neq 0##, then by suitable affine parameterization we can arrange such that ##\xi^{a}\xi_{a}=\pm1##,

Question:

What does it mean by some suitable affine parameterization? so say if ##\sigma## is a affine parameter and we do not have ##\xi^{a}\xi_{a}=\pm1##, is it saying that we can use [1] and carefully choose ##a## and ##b## such that this is the case?

I've often seen proper time used such that ##\xi^{a}\xi_{a}=\pm1## is the case.
Why is this?

Or Is this part of the definition of proper time, are there any other 'known' parameters for which ##\xi^{a}\xi_{a}=\pm1## or is the affine parameter for which this holds unique?

Thanks in advance.
 
Physics news on Phys.org
Yes, the point is that if ##\xi^a \xi_b \neq 0##, then you can pick ##a## such that ##\xi^a \xi_a = \pm 1## (##b## does not really enter into it, it is just a translation along the curve). The point is that this parametrises the curve using the curve length as parameter. In Minkowski space, for time-like curves, this means parametrising the curve with the proper time.
 
Orodruin said:
Yes, the point is that if ##\xi^a \xi_b \neq 0##, then you can pick ##a## such that ##\xi^a \xi_a = \pm 1## (##b## does not really enter into it, it is just a translation along the curve). The point is that this parametrises the curve using the curve length as parameter. In Minkowski space, for time-like curves, this means parametrising the curve with the proper time.

Ok. So if i use an affine parameter ##\tau+b## I Still achieve ##\xi^a \xi_a =\pm 1##?

For a null geodesic we can't use ##\tau## as it is always zero.
However am I correct in thinking that the paramter ##\tau+b## would be plausible?

Thanks.
 
binbagsss said:
Ok. So if i use an affine parameter ##\tau+b## I Still achieve ##\xi^a \xi_a =\pm 1##?

For a null geodesic we can't use ##\tau## as it is always zero.

Yes, if you have ##\tau' = \tau + b##, you would get ##d\tau'/d\tau = 1## and thus ##dx^\mu/d\tau = dx^\mu/d\tau'##. It is just a change of what you call "proper time equals zero".
However am I correct in thinking that the paramter ##\tau+b## would be plausible?

No, it would not be. Just by the same argumentation as above. You would still be trying to parameterise with the proper time, just with a different definition of proper time equal to zero. It does not work for light-like curves. You can still find an affine parameter, but it cannot be based on curve length (i.e., proper time).
 
Orodruin said:
Yes, if you have ##\tau' = \tau + b##, you would get ##d\tau'/d\tau = 1## and thus ##dx^\mu/d\tau = dx^\mu/d\tau'##. It is just a change of what you call "proper time equals zero".

No, it would not be. Just by the same argumentation as above. You would still be trying to parameterise with the proper time, just with a different definition of proper time equal to zero. It does not work for light-like curves. You can still find an affine parameter, but it cannot be based on curve length (i.e., proper time).

Is a re-scale of prper time ok, so ##\lambda=a\tau##?
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...

Similar threads

Back
Top