Projectile subject to air resistance

rg2004
Messages
22
Reaction score
0

Homework Statement



Consider a projectile subject to air resistance. The drag force is F=-\hat{v} C v^{a} where C and a are constants and v=\dot{r}. Restrict the problem to 2-D and take y in the vertical direction. Take the magnitude of initial velocity to be v_{0} and the initial position to be the origin. Introduce dimensionless coordinates X,Y,Z by relations

x=\frac{v_{0}^{2}}{g}X
y=\frac{v_{0}^{2}}{g}Y
t=\frac{v_{0}}{g}T

Given the above definitions show that

\frac{d^2Y}{dT^2}=-1-k V^{a-1} \frac{dY}{dT}
\frac{d^2X}{dT^2}=-k V^{a-1} \frac{dX}{dT}

where k=\frac{C v_{0}^a}{m g}

V=\sqrt{(\frac{dY}{dT})^2+(\frac{dX}{dT})^2}

The Attempt at a Solution

x=\frac{v_{0}^{2}}{g}X
dx=\frac{v_{0}^{2}}{g}dX

y=\frac{v_{0}^{2}}{g}Y
dy=\frac{v_{0}^{2}}{g}dY

t=\frac{v_{0}}{g}T
dt=\frac{v_{0}}{g}dT

finding d?/dT equations
\frac{dx}{dt}=\frac{\frac{v_{0}^{2}}{g}dX}{\frac{v_{0}}{g}dT}<br /> =v_0\frac{dX}{dT}<br />

\frac{dy}{dt}=\frac{\frac{v_{0}^{2}}{g}dY}{\frac{v_{0}}{g}dT}<br /> =v_0\frac{dY}{dT}<br />

finding \frac{d^2?}{dT^2}
\frac{d^2x}{dt^2}=\frac{dx}{dt}\frac{dx}{dt}=v_0^2\frac{d^2X}{dT^2}

\frac{d^2y}{dt^2}=\frac{dy}{dt}\frac{dy}{dt}=v_0^2\frac{d^2Y}{dT^2} From force equation:
F_{d,x}=m \ddot{x}=-\hat{v} C v^{a}=\frac{-\dot{x}}{\sqrt{\dot{x}^2+\dot{y}^2}} C (\sqrt{\dot{x}^2+\dot{y}^2})^{a}
=-\dot{x} C \sqrt{\dot{x}^2+\dot{y}^2}^{a-1}m v_0^2\frac{d^2X}{dT^2}=-(v_0\frac{dX}{dT}) C \sqrt{(v_0\frac{dX}{dT})^2+(v_0\frac{dY}{dT})^2}^{a-1}

m v_0^2\frac{d^2X}{dT^2}=-v_0^a \frac{dX}{dT} C \sqrt{(\frac{dX}{dT})^2+(\frac{dY}{dT})^2}^{a-1}

\frac{d^2X}{dT^2}=-\frac{v_0^a C}{m v_0^2} V^{a-1} \frac{dX}{dT}

\frac{d^2X}{dT^2}=-k \frac{g}{v_0^2} V^{a-1} \frac{dX}{dT}
Which is not what I'm supposed to get. I must be messing up a rule or two somewhere.

Thank you.
 
Last edited:
Physics news on Phys.org
rg2004 said:
finding d?/dT equations
\frac{dx}{dt}=\frac{\frac{v_{0}^{2}}{g}dX}{\frac{v_{0}}{g}dT}<br /> =v_0\frac{dX}{dT}<br />

\frac{dy}{dt}=\frac{\frac{v_{0}^{2}}{g}dY}{\frac{v_{0}}{g}dT}<br /> =v_0\frac{dY}{dT}<br />

finding \frac{d^2?}{dT^2}
\frac{d^2x}{dt^2}=\frac{dx}{dt}\frac{dx}{dt}=v_0^2\frac{d^2X}{dT^2}

\frac{d^2y}{dt^2}=\frac{dy}{dt}\frac{dy}{dt}=v_0^2\frac{d^2Y}{dT^2}

Do the second derivatives again. They are not the squares of the first derivatives, as you wrote.

ehild
 
So then would the derivative be

\frac{d^2x}{dt^2t}=\frac{d}{dt}\frac{dx}{dt}=\frac{d}{dt}(v_0 \frac{dX}{dT})=\frac{d}{dT}(\frac{g}{v_0})(v_0 \frac{dX}{dT})

\frac{d^2x}{dt^2}=g\frac{d^2X}{dT^2}

similarly

\frac{d^2y}{dt^2}=g\frac{d^2Y}{dT^2}

Thanks for your help
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top