Can I prove the statement if n^2 is odd, then n must be odd by contradiction?

AI Thread Summary
The discussion centers on proving by contradiction that if n^2 is odd, then n must be odd. It begins by assuming n is even, leading to the conclusion that n^2 is also even, which contradicts the initial assumption that n^2 is odd. The proof illustrates that the only possibility left is that n must be odd. Participants express confusion about the proof by contradiction method but clarify that assuming n is even leads to an unavoidable contradiction. Therefore, the statement is validated: if n^2 is odd, then n must indeed be odd.
xeon123
Messages
90
Reaction score
0
I never understand the proof by contradiction, because somewhere in the middle I always lost myself.

In this https://www.physicsforums.com/showthread.php?t=523874 there's an example of proof by contradiction.

If n is an integer such that n^2 is odd, then n must be odd.

So assume that n is an integer such that n^2 is odd. There are 2 possible cases: n can be odd or n can be even. If we show that n cannot be even, then it must be odd.
So, assume that n is even, then it has the form n=2k. But then n2=(2k)^2=4k^2=2(2k^2). This has the form 2m (with m=2k^2), thus n^2 is even. But we made the assumption that n^2 was odd, so we have reached a contradiction. So, n cannot be even (otherwise n^2 must be even), hence n must be odd.


We assume that if n^2 is odd than n is odd. This means that if n^2 is even, n can be odd or even. How can I proof a contradiction if n is even? It doesn't tell me nothing.
 
Last edited by a moderator:
Mathematics news on Phys.org
No, n^2 even implies n even. You are trying to show that if n^2 is odd, then n must be odd. So you assume that it's not true, i.e. if n^2 is odd then n is not necessarily odd. The only other choice is n is even. So suppose n^2 is odd and n is even. The result above is that if n is even then n^2 is also even. This contradicts the original assertion that n^2 was odd so it can not be true that if n^2 is odd, then n is even. The only choice left is that if n^2 is odd, then n is odd.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top