Proof by Induction: Divisibility by 17

  • Thread starter Thread starter guropalica
  • Start date Start date
  • Tags Tags
    Induction Proof
guropalica
Messages
8
Reaction score
0
Proof by induction that 3 * 5^2n+1) + 2^3n+1 is divisible by 17!
Thanks in advance guys
 
Physics news on Phys.org
In your expression, there is an ")" without an "(" --> 3 * 5^2n+1) + 2^3n+1

so it is not clear what do to!
 
You also need to try yourself and let us know where you're stuck. Then we can help.
 
I proved the base case n=1, and then I try doing the step case assuming that it satisfies for any k, then I try proving it by k+1.
I got sth like 24 * (3 * 5^(2k+1)) + 7 * 2^(3k +1) Now I'm stuck can't continue, I don't have any ideas :/
btw the initial equation is 3 * 5^(2n+1) + 2^(3n+1) !
 
Got it now :) let's denote the initial statement as K + L, so we have sth like 24l + 7k = 7(k+l) + 17k, sum of two numbers divisible by 17 is divisible by 17, anyway thx
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top