gruba
- 203
- 1
Homework Statement
Prove that \forall n\in \mathbb{N}
\sum\limits_{k=1}^{n}(-1)^{k+1}{n\choose k}\frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}
Homework Equations
-Induction
-Summation
-Binomial coefficient
The Attempt at a Solution
For n=1 equality is true.
For n=m
m-{m\choose 2}\frac{1}{2}+...+(-1)^{m+1}\frac{1}{m}=1+\frac{1}{2}+...+\frac{1}{m}
For n=m+1
\left(\sum\limits_{k=1}^{m}(-1)^{k+1}{m\choose k}\frac{1}{k}\right)+(-1)^{m+2}\frac{1}{m+1}=1+\frac{1}{2}+...+\frac{1}{m+1}
If m is even, equality is true, but not if m is odd.
Is this correct?
Could someone explain this in detail?