The discussion focuses on proving that n^3 + 2n is divisible by 3 for any natural number n using mathematical induction. Participants emphasize the importance of following the three steps of induction: proving the base case for n=1, assuming the statement is true for n=k, and then proving it for n=k+1. They guide the original poster to expand and simplify the expression for n=k+1 while keeping the induction hypothesis in mind. The conversation highlights the necessity of showing work and effort in mathematical proofs. Ultimately, the original poster finds the answer after receiving guidance.