Proof Even Order Groups Have Element of Order 2

  • Thread starter Thread starter clkt
  • Start date Start date
  • Tags Tags
    even Groups
clkt
Messages
6
Reaction score
0
How do I proof that groups of an even order must have an element of order 2? I have a vague idea, but I don't know how to put my idea together.
Aside from identity, there are an odd number of elements in my group. So one element will not have a partner and will have to be multiplied by itself to cancel out. That element must have an order of 2 such that its square = identity. But how can I create the scenario where all elements have to pair up and cancel out? Thanks in advance.
 
Physics news on Phys.org
Aside from identity, there are an odd number of elements in my group. So one element will not have a partner and will have to be multiplied by itself to cancel out. That element must have an order of 2 such that its square = identity.
This is correct. Although the wording is informal, I'd consider this an adequate proof.
But how can I create the scenario where all elements have to pair up and cancel out?
Huh?
 
I guess my question is, what is the property of a group that dictates that every element must have a "partner" to cancel out with?
 
Every element in a group has an inverse. Although not specified explicitly, it's easy to show this inverse is unique, and that the inverse of the inverse is the original element, which allows you to form pairs like you did above.
 
ahhhh, thank you!
 
can you prove a group whose order is divisible by three has an element of order 3?
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
1
Views
2K
Replies
3
Views
2K
Replies
17
Views
8K
Replies
13
Views
575
Replies
2
Views
2K
Replies
1
Views
2K
Replies
3
Views
441
Back
Top