Proof Even Order Groups Have Element of Order 2

  • Thread starter Thread starter clkt
  • Start date Start date
  • Tags Tags
    even Groups
clkt
Messages
6
Reaction score
0
How do I proof that groups of an even order must have an element of order 2? I have a vague idea, but I don't know how to put my idea together.
Aside from identity, there are an odd number of elements in my group. So one element will not have a partner and will have to be multiplied by itself to cancel out. That element must have an order of 2 such that its square = identity. But how can I create the scenario where all elements have to pair up and cancel out? Thanks in advance.
 
Physics news on Phys.org
Aside from identity, there are an odd number of elements in my group. So one element will not have a partner and will have to be multiplied by itself to cancel out. That element must have an order of 2 such that its square = identity.
This is correct. Although the wording is informal, I'd consider this an adequate proof.
But how can I create the scenario where all elements have to pair up and cancel out?
Huh?
 
I guess my question is, what is the property of a group that dictates that every element must have a "partner" to cancel out with?
 
Every element in a group has an inverse. Although not specified explicitly, it's easy to show this inverse is unique, and that the inverse of the inverse is the original element, which allows you to form pairs like you did above.
 
ahhhh, thank you!
 
can you prove a group whose order is divisible by three has an element of order 3?
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...

Similar threads

Replies
1
Views
2K
Replies
3
Views
2K
Replies
17
Views
8K
Replies
13
Views
714
Replies
2
Views
2K
Replies
1
Views
2K
Replies
3
Views
561
Back
Top