woundedtiger4
- 188
- 0
If a and b are real numbers, then a^2 + b^2 >= 2 a b
Proof:
if a>=0 and b>=0
then a-b>=0
(a-b)^2>=0
a^2 + b^2 -2ab >=0
a^2 + b^2 >= 2ab
Q.E.D.
at http://answers.yahoo.com/question/index?qid=20081104233240AApFu9W
someone has proved more or less similar question, but at
(a + b)^2 > 0
a^2 + 2ab + b^2 > 0
a^2 + b^2 ≥ 2ab
when 2ab goes from L.H.S. to R.H.S then it should be -2ab , am I correct?
Proof:
if a>=0 and b>=0
then a-b>=0
(a-b)^2>=0
a^2 + b^2 -2ab >=0
a^2 + b^2 >= 2ab
Q.E.D.
at http://answers.yahoo.com/question/index?qid=20081104233240AApFu9W
someone has proved more or less similar question, but at
(a + b)^2 > 0
a^2 + 2ab + b^2 > 0
a^2 + b^2 ≥ 2ab
when 2ab goes from L.H.S. to R.H.S then it should be -2ab , am I correct?