MHB Proof: if f holomorphic then f(z)=λz+c

  • Thread starter Thread starter Seijo
  • Start date Start date
  • Tags Tags
    Proof
Seijo
Messages
1
Reaction score
0
Hello. I need a bit of help or a hint maybe..

I am to show that if f: C -> C is a holomorphic function that is of the form f(x+iy) = u(x) + i*v(y) where u and v are real functions,
then f(z) = λz+c where λ is a real number and c is a complex one.

How would I begin to prove this?

Thanks to everyone in advance.
 
Last edited:
Physics news on Phys.org
Seijo said:
Hello. I need a bit of help or a hint maybe..

I am to show that if f: C -> C is a holomorphic function that is of the form f(x+iy) = u(x) + i*v(y) where u and v are real functions,
then f(z) = λz+c where λ is a real number and c is a complex one.

How would I begin to prove this?

Thanks to everyone in advance.

Hi Seijo, :)

Try using the Cauchy-Riemann equations since \(f\) is holomorphic.

Kind Regards,
Sudharaka.
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
2K
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K