Proof involving ##ω(ξ,n)=u(x,y)## - Partial differential equations

Click For Summary
SUMMARY

The discussion focuses on the transformations involved in the partial differential equations (PDEs) represented by the equation ##ω(ξ,n)=u(x,y)##. Key points include the correct application of the chain rule for derivatives, specifically in the context of the derivatives ##u_x##, ##u_{xx}##, and ##u_{xy}##. Participants clarify the necessity of considering higher derivatives and the implications of non-linear transformations. The coefficients ##α## and ##β## are derived from the PDEs, emphasizing the importance of correctly grouping terms related to the derivatives of the transformed variables.

PREREQUISITES
  • Understanding of partial differential equations (PDEs)
  • Familiarity with the chain rule for derivatives
  • Knowledge of transformation techniques in calculus
  • Experience with mathematical notation and symbols used in PDEs
NEXT STEPS
  • Study the derivation of the chain rule in the context of PDEs
  • Explore advanced topics in transformation methods for PDEs
  • Learn about the implications of linear vs. non-linear transformations in calculus
  • Research the application of coefficients in PDEs, particularly in relation to boundary value problems
USEFUL FOR

Mathematicians, physics students, and engineers working with partial differential equations, particularly those interested in transformation methods and derivative applications.

chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
kindly see attached.
Relevant Equations
Partial differential equations
1650259579487.png


I am going through this page again...just out of curiosity, how did they arrive at the given transforms?, ...i think i get it...very confusing...
in general,
##U_{xx} = ξ_{xx} =ξ_{x}ξ_{x}= ξ^2_{x}## . Also we may have
##U_{xy} =ξ_{xy} =ξ_{x}ξ_{y}.## the other transforms follow in a similar manner.
 
Physics news on Phys.org
The chain rule for derivatives.
chwala said:
Homework Statement:: kindly see attached.
Relevant Equations:: Partial differential equations

i think i get it...very confusing...
in general,
Uxx=ξxx=ξxξx=ξx2 . Also we may have
Uxy=ξxy=ξxξy. the other transforms follow in a similar manner.
No, this is incorrect. You are missing the derivatives of w. For example:
$$
u_x = w_\xi \xi_x + w_\eta \eta_x
$$
and so on. There seems to be an implicit assumption that the transformation is linear or the higher derivatives would also contain higher derivatives of the new variables.
 
ok the way i understand it is,
##ω(ξ, n)=u(x,y)##
##ω(ξ, n)=ξ(x,y)+η(x,y)##
##u_x##=##\frac{∂ω}{∂ξ}⋅\frac{∂ξ}{∂x}##+##\frac{∂ω}{∂η}⋅\frac{∂η}{∂x}##
##u_x=ω_ξ⋅ξ_x+ω_η⋅η_x##
 
chwala said:
ok the way i understand it is,
##ω(ξ, n)=u(x,y)##
##ω(ξ, n)=ξ(x,y)+η(x,y)##
##u_x##=##\frac{∂ω}{∂ξ}⋅\frac{∂ξ}{∂x}##+##\frac{∂ω}{∂η}⋅\frac{∂η}{∂x}##
##u_x=ω_ξ⋅ξ_x+ω_η⋅η_x##
No, this is incorret. You do not know that w is a sum of xi and eta. It may be any function.
 
Orodruin said:
No, this is incorret. You do not know that w is a sum of xi and eta. It may be any function.
Lol...let me look at this again...
The correct approach should be, since ##ξ =ξ (x,y)## is a function of ##x## and ##y## and
##η= η(x,y)## being also a function of ##x## and ##y##, then using the transform ##ω(ξ,n)=u(x,y)##, we shall have
##u_x##=##\frac{∂ω}{∂ξ}⋅\frac{∂ξ}{∂x}##+##\frac{∂ω}{∂η}⋅\frac{∂η}{∂x}##
##u_x=ω_ξ⋅ξ_x+ω_η⋅η_x##
 
Last edited:
Quite interesting how they came up with the transformations...its some bit of work. To go straight to the point we have,
##u_x=ξ_x ⋅ω_ξ+η_x⋅ω_η## it follows that,
##u_{xx}=u_x ⋅u_x=(ξ_x ⋅ω_ξ+η_x⋅ω_η)(ξ_x ⋅ω_ξ+η_x⋅ω_η)=ξ^2_x⋅ω_{ξξ}+2ξ_x⋅ η_xω_{ξη}+η^2_x⋅ω_{ηη}##
##u_{xy}=u_x ⋅u_y=(ξ_x ⋅ω_ξ+η_x⋅ω_η)(ξ_y ⋅ω_ξ+η_y⋅ω_η)=ξ_xξ_y ω_{ξξ}+(ξ_x⋅ η_y+ξ_y⋅ η_x)ω_{ξη}+η_xη_yω_{ηη}##
##u_{yy}=u_y ⋅u_y=(ξ_y ⋅ω_ξ+η_y⋅ω_η)(ξ_y ⋅ω_ξ+η_y⋅ω_η)=ξ^2_y⋅ω_{ξξ}+2ξ_y⋅ η_yω_{ξη}+η^2_y⋅ω_{ηη}##

Now what they simply did in finding ##α## for e.g is by putting all coefficients of ##ω_{ξξ}## together, i.e on the pde of the form;

##au_{xx}+2bu_{xy}+cu_{yy}+...##

##α##= ##[aξ^2_x+2bξ_xξ_y+cξ^2_y]ω_{ξξ}##

Coming to the coefficients of ##ω_{ξη}##, we shall be getting ##β## i.e;
##β##=##[2aξ_x⋅ η_x+2b(ξ_x⋅ η_y+ξ_y⋅ η_x)+2cξ_y⋅ η_y]ω_{ξη}##
##β##=##[aξ_x⋅ η_x+b(ξ_x⋅ η_y+ξ_y⋅ η_x)+cξ_y⋅ η_y]ω_{ξη}##
...

the other transforms, ##δ, ϒ ##and ##∈## can be found similarly... i always try to use my own way of thinking ...and also utilizing your input...much appreciated guys...cheers @Orodruin thanks mate. Bingo!
 
Last edited:
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 21 ·
Replies
21
Views
2K
Replies
5
Views
2K
Replies
5
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
7
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K