Proof of Hartog's Theorem: Axiom of Replacement Applied

  • Thread starter Thread starter mathshelp
  • Start date Start date
  • Tags Tags
    Theorem
mathshelp
Messages
11
Reaction score
0
Write out the proof of Hartog's Theorem again carefully highlighting how the Axiom of Replacement is used

How can you highlight the axiom of replacment?
 
Last edited:
Physics news on Phys.org
In the proof of Hartog's theorem, you reach a point where you just proved that the class of all well-orders of the set X (using the separation axiom schema). Now you have to prove that each the class of all order-types (isomorphic ordinals) of each of these well-orders is also a set, and it's here that you use replacement, by constructing a first-order formula that expresses the isomorphism of each (Y,<), where Y is a subset of X and "<" is a well-order in Y, to an ordinal.
This is the key step in Hartog's proof, the one that allows him to sidestep AC, so I think the "highlighting" is a careful, step-by-step explanation of how the replacement schema is used.
 
That makes sense, but how do you construct a first order formula?
 
I assume that, if you're studying formal Set Theory, that you are familiar with first-order logic (otherwise, it's impossible to understand anything of Set Theory).
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top