Proof of Natural Number Inequality: a < b < c

  • Thread starter Thread starter cragar
  • Start date Start date
  • Tags Tags
    Proof
cragar
Messages
2,546
Reaction score
3

Homework Statement


prove that if a; b; c are natural
numbers and if a < b and b < c, then a < c.

Some axioms we are allowed to use is if a<b then there exists a natural number e
such that a+e=b.

The Attempt at a Solution


If a<b then there is a natural number x such that a+x=b,
if b<c then there exists a natural number y such that b+y=c,
Now since b= a+x then a+x+y=c and since x+y is a another natural number, call it z then
a+z=c which implies a<c.
Is this the correct way to go about it.
 
Physics news on Phys.org
Right.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top