B Proof of the identity A\(A\B)=B

VladZH
Messages
56
Reaction score
1
I'm trying to proof an identity from Munkres' Topology

A \ ( A \ B ) = B

By definition A \ B = {x : x in A and x not in B}

A \( A \ B) = A \ (A ∩ Bc) = A ∩ (A ∩ Bc)c = A ∩ (Ac ∪ B) = (A ∩ Ac) ∪ (A ∩ B) = ∅ ∪ (A ∩ B) = A ∩ B

What did I miss?
 
Physics news on Phys.org
VladZH said:
I'm trying to proof an identity from Munkres' Topology

A \ ( A \ B ) = B

By definition A \ B = {x : x in A and x not in B}

A \( A \ B) = A \ (A ∩ Bc) = A ∩ (A ∩ Bc)c = A ∩ (Ac ∪ B) = (A ∩ Ac) ∪ (A ∩ B) = ∅ ∪ (A ∩ B) = A ∩ B

What did I miss?
Either that ##A=X## is the entire space, or you've found a typo. Just consider a point ##b\in B\text{ \ }A##. It is clearly in ##B## but never in any set ##A\text{ \ }C## whatever ##C## might be; except ##A=X## of course.
 
  • Like
Likes VladZH
VladZH said:
I'm trying to proof an identity from Munkres' Topology

A \ ( A \ B ) = B

By definition A \ B = {x : x in A and x not in B}

A \( A \ B) = A \ (A ∩ Bc) = A ∩ (A ∩ Bc)c = A ∩ (Ac ∪ B) = (A ∩ Ac) ∪ (A ∩ B) = ∅ ∪ (A ∩ B) = A ∩ B

What did I miss?

Perhaps even more simply, from the definition it is clear that ##A \text{ \ }X \subset A##. So, the identity as given cannot hold for all ##A, B##.
 
  • Like
Likes VladZH
VladZH said:
I'm trying to proof an identity from Munkres' Topology

A \ ( A \ B ) = B

By definition A \ B = {x : x in A and x not in B}

A \( A \ B) = A \ (A ∩ Bc) = A ∩ (A ∩ Bc)c = A ∩ (Ac ∪ B) = (A ∩ Ac) ∪ (A ∩ B) = ∅ ∪ (A ∩ B) = A ∩ B

What did I miss?

You missed nothing. This is correct.
 
  • Like
Likes VladZH
Thank you, guys. Seems like I confused with the formultaion
 
You can always resort to brute force by trying to show every element of B is a subset of A\(A\B) and viceversa. But, yes, you need to know the overall inclusion relation between A and B.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Replies
1
Views
2K
Replies
5
Views
2K
Replies
4
Views
2K
Replies
1
Views
2K
Replies
18
Views
2K
Back
Top